DOI QR코드

DOI QR Code

Primary Productivity and Photosynthetic Pigment Production Rates of Periphyton and Phytoplankton in Lake Paldang using 13C Tracer

13C 추적자를 이용한 팔당호 수변역 부유 및 부착조류의 일차생산력과 광합성 색소 생산속도 연구

  • Min, Jun oh (Department of Marine Science and Convergence Technology, Hanyang University) ;
  • Ha, Sun Yong (Korea Polar Research Institute (KOPRI), Division of Polar Ocean Science) ;
  • Hur, Jin (Department of Environment & Energy, Sejong University) ;
  • Shin, Kyung Hoon (Department of Marine Science and Convergence Technology, Hanyang University)
  • 민준오 (한양대학교 해양융합공학과) ;
  • 하선용 (한국해양과학기술원 부설 극지연구소) ;
  • 허진 (세종대학교 환경에너지공간융합학과) ;
  • 신경훈 (한양대학교 해양융합공학과)
  • Received : 2019.06.12
  • Accepted : 2019.07.30
  • Published : 2019.09.30

Abstract

The primary productivity and production rate of photosynthetic pigment of periphyton and phytoplankton were estimated using a $^{13}C$ stable labeling technique in May 2011, in the waterfront of Lake Paldang. Primary productivity of periphyton ($28.15mgC\;m^{-2}\;d^{-1}$) was higher than phytoplankton production ($0.14mgC\;m^{-2}\;d^{-1}$). The net production rates of photosynthetic pigments(Chl a and Fucoxanthin) of periphyton were $2.53ngC\;m^{-2}\;d^{-1}$ and $0.12ngC\;m^{-2}\;d^{-1}$, respectively. On the other hand, the net production rate of pigments on phytoplankton (Chl a : $0.023ngC\;m^{-2}\;d^{-1}$, Fucoxanthin: $0.002ngC\;m^{-2}\;d^{-1}$) was lower than that of periphyton. Specific production rates of individual pigments of phytoplankton to the total primary productivity indicate the predominance of diatom (Fucoxanthin) species in phytoplankton assemblage in Lake Paldang. The net individual production rate of pigments by $^{13}C$ tracer was a useful tool to estimate the contribution of each phytoplankton class for total primary productivity, and it is possible to calculate the seasonal contribution of each phytoplankton class to the total primary productivity in the aquatic ecosystems. This study is the first report on photosynthetic pigment production rates of periphyton and phytoplankton.

팔당호 수변지역 내 부유조류와 부착조류의 일차생산력은 부착조류의 일차생산력이 더 높게 나타났다. 따라서 수변 지역이나 하천에서는 부착조류에 의한 유기물 생성이 주요한 수생태계 에너지 공급원이 될 것으로 판단된다. 본 연구를 통해 국내에서 처음으로 지표색소의 생산속도 분석결과가 제시되었는데 향후 일차생산력을 측정하는 데 있어서 조류의 총 일차생산력으로 국한된 측정 방법을 좀 더 세분화하여 특정 조류의 기여도 및 개별 생산력을 판단하는 데 유용하게 사용될 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 국립환경과학원, 한국연구재단

References

  1. Adamus, P.R. and L.T. Stockwell. 1983. A method for wetland functional assesment : VII. 1. Critical review and evaluation concepts, US Dept. Transportaion, Fedral Highway Administration, Report FHWA. p. 82-83.
  2. Choi, D.H., K.S. Choi, G.S. Hwang, D.S. Kim, S.W. Kim and H. Kang. 2009. Primary Production by Epiphytic Algae Attached on the Reed in Constructed Wetlands for Water Treatment. Environmental Engineering Research 31(10): 839-900.
  3. Cloern, J.E., C. Grenz and L. Videgar-Lucas. 1995. An empirical model of the phytoplankton chlorophyll: carbon ratio the conversion factor between productivity and growth rate. Limnology and Oceanography 40(7): 1313-1321. https://doi.org/10.4319/lo.1995.40.7.1313
  4. Engle, D.L. and J.M. Melack. 1993. Consequences of riverine flooding for seston and the periphyton of floating meadows in an Amazon floodplain lake. Limnology and Oceanography 38(7): 1500-1520. https://doi.org/10.4319/lo.1993.38.7.1500
  5. Gal, J.G., M.S. Kim, Y.J. Lee, J.W. Seo and K.H. Shin. 2012. Food web of Aquatic Ecosystem within the Tamjin River through the Determination of Carbon and Nitrogen Stable Isotope Ratios. Korean Journal of Limnology 45(2): 242-251.
  6. Gibb, S.W., D.G. Cummings, X. Irigoien, R.G. Barlow, R. Fauzi and C. Mantoura. 2001. Phytoplankton pigment chemotaxonomy of northeastern Altlantic. Deep Sea Research II 48: 795-823. https://doi.org/10.1016/S0967-0645(00)00098-9
  7. Goericke, R. and N.A. Welschmeyer. 1993. The carotenoid-labeling method: measuring specific rates of carotenoid synthesis in natural phytoplankton communities. Marine Ecology Progress Series 98: 157-171. https://doi.org/10.3354/meps098157
  8. Goes, J.I., N. Handa, S. Taguchi and T. Hama. 1994. Effect of UV-B radiation on the fatty acid composition of the marine phytoplankton Tetraselmis sp: Relationship to cellular pigments. Marine Ecology Progress Series 114: 259-274. https://doi.org/10.3354/meps114259
  9. Goldsborugh, L.G. and M. Hickman. 1991. A comparison of periphytic algae biomass and community structure on scirpus validus and on a morphologically similar artificial substratum. Journal of Phycology 27: 196-206. https://doi.org/10.1111/j.0022-3646.1991.00196.x
  10. Ha, S.Y., Y. Kim, M. Park, S. Kang, H. Kim and K. Shin. 2012. Production of mycosporine-like amino acids of in situ phytoplankton community in Kongsfjorden, Svalbard, Arctic. Journanl of Photochemistry and Photobiology B: Biology 114: 1-14. https://doi.org/10.1016/j.jphotobiol.2012.03.011
  11. Ha, S.Y., H.S. La, J.O. Min, K.H. Chung, S.H. Kang and K.H. Shin 2014. Photoprotective function of mycosporine-like amino acids in a bipolar diatom (Porosira glacialis): evidence from ultraviolet radiation and stable isotope probing. Diatom Research 29(4): 399-409. https://doi.org/10.1080/0269249X.2014.894945
  12. Hama, T., T. Miyazaki, Y. Ogawa, T. Iwakuma, M. Takahashi, A. Otsuki and S. Ichimura. 1983. Measurement of photosynthetic production of a marine phytoplankton population using a stable $^{13}C$ isotope. Marine Biology 73: 31-36. https://doi.org/10.1007/BF00396282
  13. Huntsinger, K.R.G and P.E. Maslin. 1976. Contribution of phytoplankton, periphyton, and macrophytes to primary production in Eagle Lake, California. California Department of Fish and Wildlife 62: 187-194.
  14. Jeffrey, S.W. and M. Vesk. 1997a. Introduction to marine phytoplankton and their pigment signatures, p. 37-84. In: Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods (Jeffrey, S.W. et al. eds.). UNESCO, Paris.
  15. Jeffrey, S.W., R.F.C. Mantoura and S.W. Wright. 1997b. Phytoplankton Pigments in Oceanography (Jeffrey, S.W. et al., eds.). UNESCO Publishing, Paris.
  16. Jo, M.H., M.S. Byun, J.S. Sim and S.H. Jang. 2014 Geographic Distribution of Periphyton Diatom Species: A Case Study of Achnanthes convergens in Nakdong River Basin. Journal of the Korean Association of Geographic Information Studies 17(3): 175-194. https://doi.org/10.11108/kagis.2014.17.3.175
  17. Khondker, M. and M. Dokulil. 1988. Seasonality, biomass and primary productivity of epipelic algae in a shallow lake (Neusiedlersee, Austria). Acta Hydrochimica et Hydrobiologica 16(5): 499-515. https://doi.org/10.1002/aheh.19880160510
  18. Lee, Y.J., M.S. Kim, E.J. Won and K.H. Shin. 2006. An Application of 13C Tracer for the Determination of Size Fractionated Primary Productivity in Upper Stream of Lake Shihwa. Korean Journal of Limnology 39(1): 93-99.
  19. Lee, Y.J., J.O. Min, Y.S. Shin, S.H. Kim and K.H. Shin. 2011. Temporal and Spatial Variations of Primary Productivity in Estuary of Youngsan River and Mokpo Coastal Areas. Korean Journal of Limnology 44(4): 327-336.
  20. Lee, Y.J., B.M. Lee, J. Hur, J.O. Min, S.Y. Ha, K.T. La, K.T. Kim and K.H. Shin 2016. Biodegradability of algal-derived organic matter in a large artificial lake by using stable isotope tracers. Environmental Science and Pollution Research 23(9): 8358-8366. https://doi.org/10.1007/s11356-016-6046-1
  21. Mclntire, C.D. and H.K. Phinney. 1965. Laboratory studies of periphyton production and community metabolism in lotic environments. Ecological Monographs 35: 237-58. https://doi.org/10.2307/1942138
  22. Mclntire, C.D. 1966. Some effects of current velocity on periphyton communities in laboratory streams. Hydrobiologia 27: 559-70. https://doi.org/10.1007/BF00042713
  23. Min, J.O., S.Y. Ha, B.H. Choi, M.H. Chung, W.D. Yoon, J.S. Lee and K.H. Shin. 2011. Primary Productivity and Pigments Variation of Phytoplankton in the Seomjin River Estuary during Rainy Season in Summer. Korean Journal of Limnology 44(3): 303-313.
  24. Min, J.O., S.Y. Ha, B.H. Choi, M.H. Chung, S.H. Youn, W.D. Yoon, J.S. Lee and K.H. Shin. 2012. Seasonal Variation of Primary Productivity and Pigment of Phytoplankton Community Structure in the Seomjin Estuary. Korean Journal of Limnology. 45(2): 139-149.
  25. Morabito, G., W. Hamza and D. Ruggju. 2004. Carbon assimilation and phytoplankton growth rates across the trophic spectrum: an application of the chlorophyll labelling technique. Jouranl of limnology 63(1): 33-43. https://doi.org/10.4081/jlimnol.2004.33
  26. Park, M.O. and J.S. Park. 1997. HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. The Journal of the Korean Society of Oceanography 32: 46-55.
  27. Park, K.S., S.J. Hwang, H.S. Kim, D.S. Kong and J.K. Shin. 2006. Factors to Affect the Growth of Filamentous Periphytic Algae in the Artificial Channels using Treated Wastewater. Korea Journal of Limnology 39(1): 100-109.
  28. Pinckney, J.L., D.F. Millie, K.E. Howe, H.W. Paerl and J.P. Hurley. 1996. Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments. Journal of Plankton Research 18(10): 1867-1880. https://doi.org/10.1093/plankt/18.10.1867
  29. Redalje, D.G. and E.A. Laws. 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Marine Biology 62: 73-79. https://doi.org/10.1007/BF00396953
  30. Schluter, L., F. Mohlenberg, H. Havskum and S. Larsen. 2000. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/ chlorophyll a ratios. Marine Ecology Progress Series 192: 49-63. https://doi.org/10.3354/meps192049
  31. Shin, K.H., T. Hama, N. Yoshie, S. Noriki and S. Tsunogai. 2000. Dynamics of fatty acids in newly biosynthesized phytoplankton cells and seston during a spring bloom off the west coast of Hokkaido Island, Japan. Marine Chemistry 70: 243-256. https://doi.org/10.1016/S0304-4203(00)00030-X
  32. Shin, K.H., T. Hama and N. Handa. 2003. Effect of nutrient conditions on the composition of photosynthetic products in the East China Sea and surrounding waters. Deep-Sea Research II 50: 389-401. https://doi.org/10.1016/S0967-0645(02)00463-0
  33. Stevenson, R.J. 1996. An introduction to algal ecology in freshwater benthic habitats, p. 3-30. In: Algal Ecology : Freshwater Benthic Ecosystems (Stevenson R.J., M.L. Bothwell and R.L. Lowe, eds.). Academic Press, San Diego.
  34. Thomas, D.F. and G.N. David. 1983. Characteristics of epiphyte communities on natural and artificial submersed lotic plants: Substrate effects. Arch Hydrobiol 3: 293-301.
  35. Wetzel, R.G. 1972. The role of carbon in hard water marl lakes, 1: 84-97. In: Nutrient and Eutrophication: The limiting Nutrient Controversy (Linkens, G.E. ed.). Special Symposium, American Society of Limnology and Oceanography.
  36. Wetzel, R.G. 1983. Recommendations for future research on periphyton, p. 339-346. In: Periphyton of Freshwater Ecosystems (Wetzel, R.G. ed.). Dr W. Junk Publishers, The Hague.
  37. Wetzel, R.G. 1990. Land-water interfaces: metabolic and limnological regulators. Verhandlungen des Internationalen Verein Limnologie 24: 6-24.
  38. Wetzel, R.G. 2001. Land-water interfaces: Attached microorganisms, Littoral algae, and Zooplankton, p. 578-621. In: Limnology: Lake and River Ecosystems. Academic press.