DOI QR코드

DOI QR Code

Employing high-temperature gas flux in a residual salt separation technique for pyroprocessing

  • Received : 2019.01.22
  • Accepted : 2019.05.26
  • Published : 2019.10.25

Abstract

Residual salt separation is an essential step in pyroprocessing because its reaction products, as prepared by electrochemical unit processes, contain frozen residual electrolyte species, which are generally composed of alkali-metal chloride salts (e.g., LiCl, KCl). In this study, a simple technique that utilizes high-temperature gas flux as a driving force to melt and push out the residual salt in the reaction products was developed. This technique is simple as it only requires the use of a heating gun in combination with a gas injection system. Consequently, $LiNO_3-ZrO_2$ and $LiCl-ZrO_2$ mixtures were successfully separated by the high-temperature gas injection (separation efficiency > 93%), thereby demonstrating the viability of this simple technique for residual salt separation.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. H.-S. Lee, G.-I. Park, K.-H. Kang, J.-M. Hur, J.-G. Kim, D.-H. Ahn, Y.-Z. Cho, E.-H. Kim, Pyroprocessing technology development at KAERI, Nucl. Eng. Technol. 43 (2011) 317-328. https://doi.org/10.5516/NET.2011.43.4.317
  2. T. Inoue, L. Koch, Development of pyroprocessing and its future direction, Nucl. Eng. Technol. 40 (2008) 183-190. https://doi.org/10.5516/NET.2008.40.3.183
  3. E.-Y. Choi, S.M. Jeong, Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology, Pro. Nat. Sci. Mater. 25 (2015) 572-582. https://doi.org/10.1016/j.pnsc.2015.11.001
  4. A.R. Brunsvold, P.D. Roach, B.R. Westphal, Design and development of a cathode processor for electrometallurgical treatment of spent nuclear fuel, in: Proceedings of ICONE 8: 8th International Conference on Nuclear Engineering, Baltimore, MD, USA, April 2-6, 2000.
  5. I. Kim, S.C. Oh, S.C.H.S. Im, J.-M. Hur, H.S. Lee, Distillation of LiCl from the LiCl-$Li_2O$ molten salt of the electrolytic reduction process, J. Radioanal. Nucl. Chem. 295 (2013) 1413-1417. https://doi.org/10.1007/s10967-012-1997-2
  6. J.-H. Lee, Y.-H. Kang, S.-C. Hwang, J.-B. Shim, B.-G. Ahn, E.-H. Kim, S.-W. Park, Electrodeposition characteristics of uranium in molten LiCl-KCl eutectic and its salt distillation behavior, J. Nucl. Sci. Technol. 43 (2006) 263-269. https://doi.org/10.1080/18811248.2006.9711088
  7. B.R. Westphal, K.C. Marsden, J.C. Price, D.V. Laug, On the development of a distillation process for the electrometallurgical treatment of irradiated spent nuclear fuel, Nucl. Eng. Technol. 40 (2008) 163-174. https://doi.org/10.5516/NET.2008.40.3.163
  8. E.-Y. Choi, M.K. Jeon, J.-M. Hur, Reoxidation of uranium in electrochemically reduced simulated oxide fuel during residual salt distillation, J. Radioanal. Nucl. Chem. 314 (2017) 207-213. https://doi.org/10.1007/s10967-017-5404-x
  9. C.P. Wang, Z.S. Li, W. Fang, X.J. Liu, Thermodynamic database and the phase diagrams of the (U, Th, Pu)-X binary system, J. Phase Equilibria Diffusion 30 (2009) 535-552. https://doi.org/10.1007/s11669-009-9562-6
  10. E.-Y. Choi, J. Lee, D.H. Heo, J.-M. Hur, Separation of electrolytic reduction product from stainless steel wire mesh cathode basket via salt draining and reuse of the cathode basket, Sci. Technol. Nucl. Ins. 2017 (2017) 3698053.
  11. S.-W. Kim, J.K. Lee, D. Ryu, M.K. Jeon, S.-S. Hong, D.H. Heo, E.-Y. Choi, Residual salt separation technique using centrifugal force for pyroprocessing, Nucl. Eng. Technol. 50 (2018) 1184-1189. https://doi.org/10.1016/j.net.2018.06.009
  12. E.-Y. Choi, J. Lee, S.-J. Lee, S.-W. Kim, S.-C. Jeon, S.H. Cho, S.C. Oh, M.K. Jeon, S.K. Lee, H.W. Kang, J.-M. Hur, Stability of yttria-stabilized zirconia during pyroprocessing test, J. Nucl. Mater. 475 (2016) 57-61. https://doi.org/10.1016/j.jnucmat.2016.03.030
  13. A.R. Shankar, U.K. Mudali, R. Sole, H.S. Khatak, B. Raj, Plasma-sprayed yttria-stabilized zirconia coatings on type 316L stainless steel for pyrochemical reprocessing plant, J. Nucl. Mater. 372 (2008) 226-232. https://doi.org/10.1016/j.jnucmat.2007.03.175
  14. H.-Y. Lee, K.-H. Baik, Comparison of corrosion resistance between $Al_2O_3$ and YSZ coatings against high temperature LiCl-$Li_2O$ molten salt, Met. Mater. Int. 15 (2009) 783-787. https://doi.org/10.1007/s12540-009-0783-8
  15. L. Li, L. Shi, S. Cao, Y. Zhang, Y. Wang, $LiNO_3$ molten salt assisted synthesis of spherical nano-sized YSZ powders in a reverse microemulsion system, Mater. Lett. 62 (2008) 1909-1912. https://doi.org/10.1016/j.matlet.2007.10.039
  16. E.-Y. Choi, M.K. Jeon, J. Lee, S.-W. Kim, S.K. Lee, S.-J. Lee, D.H. Heo, H.W. Kang, S.-C. Jeon, J.-M. Hur, Reoxidation of uranium metal immersed in a $Li_2O$-LiCl molten salt after electrolytic reduction of uranium oxide, J. Radioanal. Nucl. Chem. 485 (2017) 90-97.

Cited by

  1. Effects of additives on the thermal stability of silver tellurite glass system vol.165, 2022, https://doi.org/10.1016/j.anucene.2021.108683