Acknowledgement
Supported by : National Research Foundation (NRF), Korea Institute of Energy Technology Evaluation and Planning
References
- J.I. Bennetch, G.E. Modzelewski, L.L. Spain, G.V. Rao, Root cause evaluation and repair of Alloy 82/182 j-groove weld cracking of reactor vessel head penetrations at North Anna unit 2, in: Trans. of ASME PVP Conf 437, 2002, pp. 179-186.
- S.S. Kang, S.S. Hwang, H.P. Kim, Y.S. Lim, J.S. Kim, The experience and analysis of vent pipe PWSCC in PWR vessel head penetration, Nucl. Eng. Des. 269 (2014) 291-298. https://doi.org/10.1016/j.nucengdes.2013.08.043
- KAERI, Survey on Corrosion and Stress Corrosion Cracking of Alloy 690, AR-891, 2011.
- USNRC, Regulatory Approach for PWSCC of Dissimilar Metal Butt Welds in Pressurized Water Reactor Primary Coolant System Piping, DC 20555-0001, 2008.
- K.S. Kang, H.J. Lee, B.S. Lee, I.C. Jung, K.S. Park, Residual stress analysis of an overlay weld and a repair weld on the dissimilar butt weld, Nucl. Eng. Des. 239 (2009) 2771-2777. https://doi.org/10.1016/j.nucengdes.2009.08.022
- R.A. Page, Stress corrosion cracking of Alloys 600 and 690 and Nos. 82 and 182 weld metals in high-temperature water, Corrosion 39 (1983) 409-421. https://doi.org/10.5006/1.3593883
- R.A. Page, Stress corrosion of Alloy 182 weld metal in high-temperature water the effect of a carbon steel couple, Corrosion 41 (1985) 338-344. https://doi.org/10.5006/1.3582015
- G.E. Fuchs, S.Z. Hayden, The microstructure and tensile properties of nitrogen containing vacuum atomized Alloy 690, Scripta, Metall 25 (1991) 1483-1488. https://doi.org/10.1016/0956-716X(91)90437-6
- Z. Barsoum, Residual stress analysis and fatigue of multi-pass welded tubular stuctures, Eng. Fail. Anal. 15 (2008) 863-874. https://doi.org/10.1016/j.engfailanal.2007.11.016
- Z. Barsoum, I. Barsoum, Residual stress effects on fatigue life of welded structures using LEFM, Eng. Fail. Anal. 16 (2009) 449-467. https://doi.org/10.1016/j.engfailanal.2008.06.017
- P. Dong, Welding residual stresses and effects on fracture in pressure vessel and piping components: a millennium review and beyond, J. Press. Vessel Technol. 122 (2000) 329-338. https://doi.org/10.1115/1.556189
- P. Dong, Residual stress analyses of a multi-pass girth weld: 3-D special shell versus axisymmetric models, J. Press. Vessel Technol. 123 (2002) 207-213. https://doi.org/10.1115/1.1359527
- D. Deng, S. Kiyoshima, K. Ogawa, N. Yanagida, K. Saito, Predicting welding residual stresses in a dissimilar metal girth welded pipe using 3D finite element model with a simplified heat source, Nucl. Eng. Des. 241 (2011) 46-54. https://doi.org/10.1016/j.nucengdes.2010.11.010
- S.H. Lee, Y.S. Chang, S.W. Kim, Residual stress assessment of nickel-based Alloy 690 welding parts, Eng. Fail. Anal. 54 (2015) 57-73. https://doi.org/10.1016/j.engfailanal.2015.03.022
- S. Xu, Y. Wei, D. Guo, L. Zhang, W. Wang, Numerical investigation of thermo-mechanical stress in U-tube including forming effect for the SCC failure analysis, Eng. Fail. Anal. 77 (2017) 126-137. https://doi.org/10.1016/j.engfailanal.2017.02.010
- USNRC, Crack Growth Rates and Metallographic Examinations of Alloy 600 and Alloy 82/182 from Field Components and Laboratory Materials Tested in PWR Environments, CR-6964, 2008.
- L.F. Fredette, H.J. Rathbun, NRC/EPRI welding residual stress and validation program-phase II details and finding, in: Proc. ASME PVP Conf, 2011, pp. PVP2011-57642.
- M. Kerr, H.J. Rathbun, Summary of finite element sensitivity studies conducted in support of the NRC/EPRI welding residual stress program, in: Proc. ASME PVP Conf, 2012, pp. PVP2012-78883.
- B. Alexandreanu, Cyclic and SCC behavior of Alloy 152 weld in a PWR environment, in: Proc. ASME PVP Conf, 2011, pp. PVP2011-57463.
- B. Alexandreanu, SCC behavior of Alloy 52M/182 weld overlay in a PWR environment, in: Proc. ASME PVP Conf, 2011, pp. PVP2011-57465.
- M. Kerr, M.R. Hill, M.D. Olson, Study of residual stresses in compact tension specimens fabricated from weld metal, Corrosion 69 (2013) 975-985. https://doi.org/10.5006/0832
- R.B. Rebak, Z. Szklarska, The mechanism of stress corrosion cracking of Alloy 600 in high temperature water, Corrosion 38 (1996) 971-988. https://doi.org/10.1016/0010-938X(96)00183-7
- J.M. Boursier, D. Desjardins, F. Vallant, The influence of the strain-rate in the stress corrosion cracking of Alloy 600 in high temperature primary water, Corrosion 37 (1995) 493-508. https://doi.org/10.1016/0010-938X(94)00158-3
- B.A. Young, X. Gao, T.S. Srivatsan, P.J. King, The response of Alloy 690 tubing in a pressurized water reactor environment, Mater. Des. 28 (2007) 373-379. https://doi.org/10.1016/j.matdes.2005.10.001
- B.A. Young, X. Gao, T.S. Srivatsan, A study of life prediction differences for a nickel-base Alloy 690 using a threshold and a non-threshold model, J. Nucl. Mater. 394 (2009) 63-66. https://doi.org/10.1016/j.jnucmat.2009.08.007
- S.C. Yu, Y.S. Chang, Y.J. Kim, S.W. Kim, S.S. Hwang, H.P. Kim, Comparison of experimental and numerical analysis data for BMI mock-up with dissimilar metal welds, in: Trans. of ASME PVP Conf, 2008. PVP2008-61557.
- J.W. Hutchinson, K.W. Neale, Finite strain J2 deformation theory, in: Proceeding of the IUTAM Symposium on Finite Elasticity, 1980, ISBN 90 247 2629 8, pp. 237-247.
- W.H. Henry, W.A. Ronald, Deformable Bodies and Their Material Behavior, John Wiley & Sons Inc., 2005.
- Special Metals Corporation, Inconel 600 information. www.specialmetals.com, 2008.
- Special Metals Corporation, Inconel 690 information. www.specialmetals.com, 2009.
- ABAQUS Version 6.13, ABAQUS Standard/User's Manual, Simulia Inc., 2013.
- D. Ruldland, Y. Chen, T. Zhang, G. Wilkowski, J. Broussard, G. White, Comparison of welding residual stress solutions for control rod drive mechanism nozzles, in: Trans. Of ASME PVP Conference, 2007, pp. 997-1011.
- P.I. Frank, Introduction to Heat Transfer, sixth ed., John Wiley & Sons, 2011.
- D.F. Justin, Welding Simulations of Aluminum Alloy Joints by Finite Element Analysis, Master's Thesis, Virginia Polytechnic Institute and state University, 2002.
- KHNP, in: Standard Procedure for Finite Element Residual Stress Analysis. Rev vol. 1, 2013.
- ASTM E647-15, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, PO Box C700, West Conshohocken, PA 19428-2959. United States.
- EPRI, Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Thick-Wall Alloy 600 Material, MRP-55, 2002.
- EPRI, Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 82, 182, and 132 Welds, MRP-115, 2004.
- EPRI, Materials Reliability Program: Resistance of Alloys 690, 152, and 52 to Primary Water Stress Corrosion Cracking, MRP-237, 2013.
- PNNL, SCC Crack Growth Rate Testing of Nickel-Base Alloy 690 and Alloy 152 in PWR Primary Water, USNRC Project N6007, 2008.
- S.W. Kim, Y.S. Lim, D.J. Kim, S.S. Hwang, H.P. Kim, M.J. Choi, Evaluation of PWSCC crack growth rate of cold-worked Alloy 690, in: The 10th International Workshop on the Integrity of Nuclear Components, 2013.
- USNRC, U.S. Plant Experience with Alloy 600 Cracking and Boric Acid Corrosion of Light-Water Reactor Pressure Vessel Materials, NUREG-1823, 2005.
- USNRC, Stress Corrosion Cracking in Nickel-Base Alloys 690 and 152 Weld in Simulated PWR Environment, CR-7137, 2009.
- USNRC, Pacific Northwest National Laboratory Investigation of Stress Corrosion Cracking in Nickel-Base Alloys, CR-7103, 2012.
- EPRI, Resistance to Primary Water Stress Corrosion Cracking of Alloy 690 in Pressurized Water Reactors, MRP-258, 2009.
- Y.S. Lim, D.J. Kim, S.W. Kim, H.P. Kim, Crack growth and cracking behavior of Alloy 600/182 and Alloy 690/152 welds in simulated PWR primary water, in: Nucl. Eng. & Tech 51, 2019 press in.
- S.W. Kim, K.H. Eom, Y.S. Lim, D.J. Kim, PWSCC growth rate model of alloy 690 for head penetration nozzles of Korean PWRs, in: Nucl. Eng. & Tech. 51, 2019 press in.