DOI QR코드

DOI QR Code

Feasibility of clay-shielding material for low-energy photons (Gamma/X)

  • Tajudin, S.M. (Universiti Sultan Zainal Abidin (UniSZA), Faculty of Health Sciences) ;
  • Sabri, A.H.A. (Universiti Sultan Zainal Abidin (UniSZA), Faculty of Health Sciences) ;
  • Abdul Aziz, M.Z. (Oncological and Radiological Science Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia) ;
  • Olukotun, S.F. (Department of Physics and Engineering Physics, Obafemi Awolowo University) ;
  • Ojo, B.M. (Department of Physics and Engineering Physics, Obafemi Awolowo University) ;
  • Fasasi, M.K. (Centre for Energy Research and Development (CERD), Obafemi Awolowo University)
  • 투고 : 2019.03.07
  • 심사 : 2019.04.25
  • 발행 : 2019.09.25

초록

While considering the photon attenuation coefficient (${\mu}$) and its related parameters for photons shielding, it is necessary to account for its transmitted and reflected photons energy spectra and dose contribution. Monte Carlo simulation was used to study the efficiency of clay ($1.99g\;cm^{-3}$) as a shielding material below 150 keV photon. Am-241 gamma source and an X-ray of 150 kVp were calculated. The calculated value of ${\mu}$ for Am-241 is higher within 5.61% compared to theoretical value for a single-energy photon. The calculated half-value layer (HVL) is 0.9335 cm, which is lower than that of ordinary concrete for X-ray of 150 kVp. A thickness of 2 cm clay was adequate to attenuate 90% and 85% of the incident photons from Am-241 and X-ray of 150 kVp, respectively. The same thickness of 2 cm could shield the gamma source dose rate of Am-241 (1 MBq) down to $0.0528{\mu}Sv/hr$. For X-ray of 150 kVp, photons below 60 keV were significantly decreased with 2 cm clay and a dose rate reduction by ~80%. The contribution of reflected photons and dose from the clay is negligible for both sources.

키워드

참고문헌

  1. George L. Stukenbroeker, Charles F. Bonilla, Ruben W. Peterson, The use of lead as a shielding material, Nucl. Eng. Des. 13 (1970) 3-145. https://doi.org/10.1016/0029-5493(70)90030-0
  2. Seung-Jae Hyun, Ki-Jeong Kim, Tae-Ahn Jahng, Hyun-Jib Kim, Efficiency of lead aprons in blocking radiation-how protective are they? Heliyon 2 (5) (2016).
  3. J.P. McCaffrey, E. Mainegra-Hing, H. Shen, Optimizing non-Pb radiation shielding materials using bilayers, Med. Phys. (2009) 36.
  4. Kun Yue, Wenyun Luo, Xiaoqing Dong, Chuanshan Wang, Guohua Wu, Mawei Jiang, Yuanzi Zha, A new lead-free radiation shielding material for radiotherapy, Radiat. Prot. Dosim. 133 (2009) 256-260. https://doi.org/10.1093/rpd/ncp053
  5. H.M. Soylu, F. Yurt Lambrecht, Ersoz, Gamma radiation shielding efficiency of a new lead-free composite material, J. Radioanal. Nucl. Chem. 305 (2015) 529. https://doi.org/10.1007/s10967-015-4051-3
  6. A.K. Singh, R.K. Singh, B. Sharma, A.K. Tyagi, Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application, Radiat. Phys. Chem. 138 (2017) 9-15. https://doi.org/10.1016/j.radphyschem.2017.04.016
  7. L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang, W. Zhang, Preparation and characterization of tungsten/epoxy composites for ${\gamma}$-rays radiation shielding, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms (2015) 88-93, 356-357, http://doi.org/10.1016/j.nimb.2015.04.062.
  8. A. Wani, A. Ara, J. Usmani, Lead toxicity: a review, Interdiscip. Toxicol. 8 (2015) 55-64. https://doi.org/10.1515/intox-2015-0009
  9. P. Billen, E. Leccisi, S. Dastidar, S. Li, L. Lobaton, S. Spatari, J.B. Baxter, Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics, Energy 166 (2019) 1089-1096. http://doi.org/10.1016/j.energy.2018.10.141.
  10. G. Flora, D. Gupta, A. Tiwari, Toxicity of lead: a review with recent updates, Interdiscip. Toxicol. 5 (2) (2012) 47-58. https://doi.org/10.2478/v10102-012-0009-2
  11. S.F. Olukotun, S.T. Gbenu, F.I. Ibitoye, O.F. Oladejo, H.O. Shittu, M.K. Fasasi, F.A. Balogun, Investigation of gamma radiation shielding capability of two clay materials, Nucl. Eng. Technol. 50 (2018) 957-962. https://doi.org/10.1016/j.net.2018.05.003
  12. H. Canakci Akkurt, Radiation attenuation of boron doped clay for 662, 1173 and 1332 keV gamma rays, Iran, J. Radiat. Res. 9 (2011) 37-40.
  13. Taranjot Kaura, Jeewan Sharmab, Tejbir Singha, Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy 113 (2019) 95-113. https://doi.org/10.1016/j.pnucene.2019.01.016
  14. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys, Nucl. Eng. Technol. 51 (3) (2018) 853-859. http://doi.org/10.1016/j.net.2018.12.014.
  15. M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass, J. Alloy. Comp. 745 (2018) 355-364. http://doi.org/10.1016/j.jallcom.2018.02.158.
  16. A.E. Ersundu, M. Buyukyildiz, M. Celikbilek Ersundu, E. S, akar, M. Kurudirek, The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications, Prog. Nucl. Energy 104 (September 2017) (2018) 280-287. http://doi.org/10.1016/j.pnucene.2017.10.008.
  17. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (17) (1997) 1389-1401. http://doi.org/10.1016/S0306-4549(97)00003-0.
  18. M.I. Sayyed, K.M. Kaky, E. Sakar, U. Akbaba, M.M. Taki, O. Agar, Gamma radiation shielding investigations for selected germanate glasses, J. Non-Cryst. Solids 512 (2019) 33-40. November 2018, http://doi.org/10.1016/j.jnoncrysol.2019.02.014.
  19. H. Hirayama, Y. Namito, A.F. Bielajew, S.J. Wilderman, W.R. Nelson, EGS5 Code System. SLAC Report SLAC-R-730 and KEK Rep. 2005, vol. 8, 2010.
  20. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXComda Program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654. https://doi.org/10.1016/j.radphyschem.2004.04.040
  21. Japan Radioisotope Association, Radioisotope Pocket Data Book, eleventh ed., Maruzen, Tokyo, 2011, pp. 22-100.
  22. https://icru.org/.
  23. S.M. Tajudin, Y. Namito, T. Sanami, H. Hirayama, Quasi-monoenergetic 200 keV photon field using a radioactive source with backscatter layout, Jpn. J. Appl. Phys. 53 (2014) 116401. https://doi.org/10.7567/JJAP.53.116401
  24. K. Cranley, B.J. Gilmore, G.W.A. Fogarty, L. Desponds, Catalogue of Spectral Data for Diagnostic X-Rays, 1997. Report No. 78 (IPEM report 78 electronic version).
  25. https://www.nde-ed.org/EducationResources/CommunityCollege/Radiography/ Physics/HalfValueLayer.htm.

피인용 문헌

  1. Monte Carlo simulation of X-ray room shielding in diagnostic radiology using PHITS code vol.13, pp.1, 2019, https://doi.org/10.1080/16878507.2020.1828020
  2. Study on the shielding materials for low-energy gamma sources vol.785, 2019, https://doi.org/10.1088/1757-899x/785/1/012007
  3. Gadolinium-doped polymeric as a shielding material for X-ray vol.1106, pp.1, 2019, https://doi.org/10.1088/1757-899x/1106/1/012010
  4. Fabrication and Characterization of Clay-Polyethylene Composite Opted for Shielding of Ionizing Radiation vol.11, pp.9, 2019, https://doi.org/10.3390/cryst11091068
  5. Enhancement of Ceramics Based Red-Clay by Bulk and Nano Metal Oxides for Photon Shielding Features vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247878