DOI QR코드

DOI QR Code

Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model

  • Li, Chao (School of Civil Engineering, Central South University) ;
  • Zoua, Jin-Feng (School of Civil Engineering, Central South University)
  • Received : 2019.02.13
  • Accepted : 2019.09.26
  • Published : 2019.10.10

Abstract

A novel theoretical solution is presented for created (zero initial radius) cavity expansion problem based on CamClay model and considers the effect of initial anisotropic in-situ stress and drained conditions. Here the strain of this theoretical solution is small deformation in elastic region and large deformation in plastic region. The works for cylindrical and spherical cavities expanding in drained condition from zero initial radius are investigated. Most of the conventional solutions were based on the isotropic and undrained condition, however, the initial stress state of natural soil mass is anisotropy by soil deposition history, and drained cavity expansion calculation is closer to actual engineering in permeable soil mass. Finally, the parametric study is presented in order to the engineering significance of this work.

Keywords

Acknowledgement

Supported by : National Key R&D Program of China

References

  1. Andersen, K.H. (1980), "Cyclic and static laboratory tests on Drammen clay", J. Geotech. Eng. Div., 106(5), 499-529. https://doi.org/10.1061/AJGEB6.0000957
  2. Bishop, R.F., Hill, R. and Mott, N.F. (1945), "Theory of identation and hardness tests", Proc. Phys. Soc., 57, 147-159. https://doi.org/10.1088/0959-5309/57/3/301
  3. Cao, L.F., Teh, C.I. and Chang, M.F. (2001), "Undrained cavity expansion in modified cam clay I: Theoretical analysis", Geotechnique, 51(4), 323-334. https://doi.org/10.1680/geot.2001.51.4.323.
  4. Chai, J.C., Miura, N. and Koga, H. (2005), "Lateral displacement of ground caused by soil-cement column installation", J. Geotech. Geoenviron. Eng., 131(5), 623-632. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(623).
  5. Chen, G.H., Zou, J.F. and Qian, Z.H. (2019), "An improved collapse analysis mechanism for the face stability of shield tunnel in layered soils", Geomech. Eng., 17(1), 97-107. https://doi.org/10.12989/gae.2019.17.1.097.
  6. Chen, S.L. and Abousleiman, Y.N. (2012), "Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified cam clay soil mass", Geotechnique, 62(5), 447-456. https://doi.org/10.1680/geot.11.P.027.
  7. Chen, S.L. and Abousleiman, Y.N. (2017), "Cavity expansion in strain hardening frictional soils under drained condition", Int. J. Numer. Anal. Meth. Geomech., 42(1), 132-142. https://doi.org/10.1002/nag.2718.
  8. Collins, I.F. and Yu, H.S. (1996), "Undrained cavity expansions in critical state soils", Int. J. Numer. Anal. Meth. Geomech., 20(7), 489-516. https://doi.org/10.1002/(SICI)1096-9853(199607)20:7<489::AID-NAG829>3.0.CO;2-V.
  9. Diao, H, Wu, Y., Liu, J. and Luo, R. (2015), "An analytical investigation of soil disturbance due to sampling penetration", Geomech. Eng., 9(6), 743-755. http://dx.doi.org/10.12989/gae.2015.9.6.743.
  10. Frikha, W. and Bouassida, M. (2014), "Prediction of stone column ultimate bearing capacity using expansion cavity model", Proc. Inst. Civ. Eng. Ground Improv., 168(2), 106-115. https://doi.org/10.1680/grim.13.00045.
  11. Frikha, W., Bouassida, M. and Stuedlein, A.W. (2015), "Discussion: Prediction of stone column ultimate capacity using cavity expansion model", Proc. Inst. Civ. Eng. Ground Improv., 168(3), 231-234. https://doi.org/10.1680/grim.14.00035
  12. Hill, R. (1950), The Mathematical Theory of Plasticity, Clarendon Press.
  13. Hill, R., Mott, N.F. and Pack, D.C. (1944), "Penetration of Munroe jets", Armament Research Department Report 2/44, U.K.
  14. Keawsawasvong, S. and Ukritchon, B. (2016), "Ultimate lateral capacity of two-dimensional plane strain rectangular pile in clay", Geomech. Eng., 11(2), 235-252. http://dx.doi.org/10.12989/gae.2016.11.2.235.
  15. Kwon, J., Kim, C., Im, J.C. and Yoo, J.W. (2018), "Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay", Geomech. Eng., 14(2), 175-185. https://doi.org/10.12989/gae.2018.14.2.175.
  16. Li, C. and Zou, J.F. (2019a), "Closed-form solution for undrained cavity expansion in anisotropic soil mass based on the spatially mobilized plane failure criterion", Int. J. Geomech., 19(7), 04019075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001458.
  17. Li, C., Zou, J.F. and Zhou, H. (2019b), "Cavity expansions in k0 consolidated clay", Eur. J. Environ. Civ. Eng., https://doi.org/10.1080/19648189.2019.1605937.
  18. Li, G.X. (2004), Higher Soil Mechanics, Tsinghua University Press (in Chinese).
  19. Li, L., Li, J. and Sun, D. (2016), "Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay", Comput. Geotech., 73, 83-90. https://doi.org/10.1016/j.compgeo.2015.11.022.
  20. Li, L., Li, J.P., Sun, D.A. and Li, X F. (2017), "Elasto-plastic solution to expansion of a spherical cavity in dilatant sand", Chin. J. Geotech. Eng., 39(8), 1454-1460 (in Chinese).
  21. Lukic, D.C., Prokic, A.D. and Brcic, S.V. (2014), "Stress state around cylindrical cavities in transversally isotropic rock mass", Geomech. Eng., 6(3), 213-233. https://doi.org/10.12989/gae.2014.6.3.213.
  22. Marchi, M., Gottardi, G. and Soga, K. (2014), "Fracturing pressure in clay", J. Geotech. Geoenviron. Eng., 140(2), 04013008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001019.
  23. Park, K.H., Tontavanich, B. and Lee, J.G. (2008), "A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses", Tunn. Undergr. Sp. Technol., 23(2), 151-159. https://doi.org/10.1016/j.tust.2007.03.002.
  24. Pournaghiazar, M., Russell, A.R. and Khalili, N. (2013), "Drained cavity expansions in soils of finite radial extent subjected to two boundary conditions", Int. J. Numer. Anal. Meth. Geomech., 37(4), 331-352. https://doi.org/10.1002/nag.1099.
  25. Randolph, M.F. (2003), "Science and empiricism in pile foundation design", Geotechnique, 53(10), 847-876. https://doi.org/10.1680/geot.2003.53.10.847.
  26. Roscoe, K.H., Schofield, A. and Wroth, A.P. (1958), "On the yielding of soils", Geotechnique, 8(1), 22-53. https://doi.org/10.1680/geot.1958.8.1.22.
  27. Roscoe, K.H., Schofield, A.N. and Thurairajah, A. (1963), "Yielding of clay in states wetter than critical", Geotechnique, 13(3), 211-240. https://doi.org/10.1680/geot.1963.13.3.211.
  28. Russell, A.R. and Khalili, N. (2002), "Drained cavity expansion in sands exhibiting particle crushing", Int. J. Numer. Anal. Meth. Geomech., 26(4), 323-340. https://doi.org/10.1002/nag.203.
  29. Salgado, R. and Randolph, M.F. (2001), "Analysis of cavity expansion in sand", Int. J. Geomech., 1(2), 175-192. https://doi.org/10.1061/(ASCE)1532-3641(2001)1:2(175).
  30. Schofield, A.N. and Wroth, C.P. (1968), Critical State Soil Mechanics, McGraw-Hill, London, U.K.
  31. Seo, H.J., Jeong, K.H., Choi, H. and Lee, I.M. (2012), "Pullout resistance increase of soil nailing induced by pressurized grouting", J. Geotech. Geoenviron. Eng., 138(5), 604-613. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000622.
  32. Sivasithamparam, N. and Castro, J. (2018), "Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: Theoretical solution", Acta Geotech., 13(3), 729-746. https://doi.org/10.1007/s11440-017-0587-4.
  33. Su, D. and Yang, Z.X. (2019), "Drained analyses of cylindrical cavity expansion in sand incorporating a bounding-surface model with state-dependent dilatancy", Appl. Math. Model., 68, 1-20. https://doi.org/10.1016/j.apm.2018.11.017.
  34. Teh, C.I. and Houlsby, G.T. (1991), "Analytical study of the cone penetration test in clay", Geotechnique, 41(1), 17-34. https://doi.org/10.1680/geot.1991.41.1.17.
  35. Tolooiyan, A. and Gavin, K. (2011), "Modelling the cone penetration test in sand using cavity expansion and arbitrary Lagrangian Eulerian finite element methods", Comput. Geotech., 38(4), 482-490. https://doi.org/10.1016/j.compgeo.2011.02.012.
  36. Vesic, A.S. (1972), "Expansion of cavities in infinite soil mass", J. Soil Mech. Found. Div., 98(3), 265-290. https://doi.org/10.1061/JSFEAQ.0001740
  37. Vesic, A.S. (1977), "Design of pile foundations", NCHRP Synthesis of Highway Practice, Vol. 42., Transportation Research Board, Washington, D.C., U.S.A.
  38. Wang, S., Yin, S. and Wu, Z. (2012a), "Strain-softening analysis of a spherical cavity", Int. J. Numer. Anal. Meth. Geomech., 36(2), 182-202. https://doi.org/10.1002/nag.1002.
  39. Wang, S., Yin, X., Tang, H. and Ge, X. (2012b), "A new approach for analyzing circular tunnel in strain-softening rock masses", Int. J. Rock Mech. Min. Sci., 47(1), 170-178. https://doi.org/10.1016/j.ijrmms.2009.02.011
  40. Xiao, Y. and Desai, C.S. (2016), "General stress-dilatancy relation for granular soils", J. Geotech. Geoenviron. Eng., 142(4), 02816001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001473.
  41. Yu, H.S. and Carter, J.P. (2002), "Rigorous similarity solutions for cavity expansion in cohesive-frictional soils", Int. J. Geomech., 2(2), 233-258. https://doi.org/10.1061/(ASCE)1532-3641(2002)2:2(233).
  42. Yu, M.H. (2004), Unified Strength Theory and Applications, Springer-Verlag Berlin Heidelberg, New York, U.S.A.
  43. Zhou, H., Kong, G., Liu, H. and Laloui, L. (2018), "Similarity solution for cavity expansion in thermoplastic soil", Int. J. Numer. Anal. Meth. Geomech., 42(2), 274-294. https://doi.org/10.1002/nag.2724.
  44. Zhou, H., Liu, H., Kong, G. and Huang, X. (2014), "Analytical solution of undrained cylindrical cavity expansion in saturated soil under anisotropic initial stress", Comput. Geotech., 55, 232-239. https://doi.org/10.1016/j.compgeo.2013.09.011.
  45. Zou, J.F., Chen, G. and Qian, Z. (2019a), "Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models", Comput. Geotech., 106, 1-17. https://doi.org/10.1016/j.compgeo.2018.10.014.
  46. Zou, J.F., Chen, K.F. and Pan, Q.J. (2017), "Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening", Geomech. Eng., 13(6), 907-928. https://doi.org/10.12989/gae.2017.13.6.907.
  47. Zou, J.F., Yang, T., Wang, L., Guo, W.J. and Huang, F.L. (2019b), "A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass", Geomech. Eng., 18(3), 225-234. https://doi.org/10.12989/gae.2019.18.3.225.

Cited by

  1. Load-displacement behaviour of tapered piles: Theoretical modelling and analysis vol.26, pp.1, 2019, https://doi.org/10.12989/gae.2021.26.1.001