KYUNGPOOK Math. J. 59(2019), 493-503
https://doi.org/10.5666/KMJ.2019.59.3.493
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

# Initial Maclaurin Coefficient Bounds for New Subclasses of Analytic and m-Fold Symmetric Bi-Univalent Functions Defined by a Linear Combination 

Hari M. Srivastava<br>Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada<br>Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Republic of China<br>e-mail: harimsri@math.uvic.ca<br>Abbas Kareem Wanas*<br>Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq<br>e-mail: abbas.kareem.w@qu.edu.iq

Abstract. In the present investigation, we define two new subclasses of analytic and $m$-fold symmetric bi-univalent functions defined by a linear combination in the open unit disk $U$. Furthermore, for functions in each of the subclasses introduced here, we establish upper bounds for the initial coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$. Also, we indicate certain special cases for our results.

## 1. Introduction

Let $\mathcal{A}$ stands the class of functions $f$ that are analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$, are normalized by the conditions $f(0)=f^{\prime}(0)-1=0$, and have the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

Let $S$ be the subclass of $\mathcal{A}$ consisting of functions of the form (1.1) which are also univalent in $U$. The Koebe one-quarter theorem (see [4]) states that the image of $U$ under every function $f \in S$ contains a disk of radius $\frac{1}{4}$. Therefore, every

* Corresponding Author.

Received December 7, 2018; revised March 19, 2019; accepted March 25, 2019.
2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: analytic functions, univalent functions, m-Fold symmetric biunivalent functions, coefficient bounds.
function $f \in S$ has an inverse $f^{-1}$ which satisfies $f^{-1}(f(z))=z,(z \in U)$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in $U$ if both $f$ and $f^{-1}$ are univalent in $U$. We denote by $\Sigma$ the class of bi-univalent functions in $U$ satisfying (1.1). In fact, Srivastava et al. [15] has apparently revived the study of analytic and biunivalent functions in recent years, it was followed by such works as those by Frasin and Aouf [6], Goyal and Goswami [7], Srivastava and Bansal [9] and others (see, for example $[3,10,11,12,14])$.

For each function $f \in S$, the function $h(z)=\left(f\left(z^{m}\right)\right)^{\frac{1}{m}},(z \in U, m \in \mathbb{N})$ is univalent and maps the unit disk $U$ into a region with $m$-fold symmetry. A function is said to be $m$-fold symmetric (see [8]) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1}, \quad(z \in U, m \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

We denote by $S_{m}$ the class of $m$-fold symmetric univalent functions in $U$, which are normalized by the series expansion (1.3). In fact, the functions in the class $S$ are one-fold symmetric.

In [16] Srivastava et al. defined $m$-fold symmetric bi-univalent functions analogues to the concept of $m$-fold symmetric univalent functions. They gave some important results, such as each function $f \in \Sigma$ generates an $m$-fold symmetric biunivalent function for each $m \in \mathbb{N}$. Furthermore, for the normalized form of $f$ given by (1.3), they obtained the series expansion for $f^{-1}$ as follows:

$$
\begin{align*}
& g(w)=w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots \tag{1.4}
\end{align*}
$$

where $f^{-1}=g$. We denote by $\Sigma_{m}$ the class of $m$-fold symmetric bi-univalent functions in $U$. It is easily seen that for $m=1$, the formula (1.4) coincides with the formula (1.2) of the class $\Sigma$. Some examples of $m$-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}},\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)\right]^{\frac{1}{m}} \text { and }\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}
$$

with the corresponding inverse functions

$$
\left(\frac{w^{m}}{1+w^{m}}\right)^{\frac{1}{m}},\left(\frac{e^{2 w^{m}}-1}{e^{2 w^{m}}+1}\right)^{\frac{1}{m}} \text { and }\left(\frac{e^{w^{m}}-1}{e^{w^{m}}}\right)^{\frac{1}{m}}
$$

respectively.
Recently, many authors investigated bounds for various subclasses of $m$-fold bi-univalent functions (see $[1,2,5,13,16,17,18]$ ).

The purpose of the present paper is to introduce the new subclasses $\mathcal{W} \mathcal{S}_{\Sigma_{m}}(\lambda, \gamma$, $\delta ; \alpha)$ and $\mathcal{W S}_{\Sigma_{m}}^{*}(\lambda, \gamma, \delta ; \beta)$ of $\Sigma_{m}$, which involve a linear combination of the following three expressions

$$
\frac{f(z)}{z}, \quad f^{\prime}(z) \quad \text { and } \quad z f^{\prime \prime}(z)
$$

and find estimates on the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in each of these new subclasses.

In order to prove our main results, we require the following lemma.
Lemma 1.1.([4]) If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each $k \in \mathbb{N}$, where $\mathcal{P}$ is the family of all functions $h$ analytic in $U$ for which

$$
\operatorname{Re}(h(z))>0, \quad(z \in U)
$$

where

$$
h(z)=1+c_{1} z+c_{2} z^{2}+\cdots, \quad(z \in U)
$$

## 2. Coefficient Estimates for the Function Class $\mathcal{W} \mathcal{S}_{\Sigma_{m}}(\lambda, \gamma, \delta ; \alpha)$

Definition 2.1. A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the class $\mathcal{W} \mathcal{S}_{\Sigma_{m}}(\lambda, \gamma, \delta ; \alpha)$ if it satisfies the following conditions:

$$
\begin{align*}
& \left|\arg \left(1+\frac{1}{\delta}\left[\lambda \gamma\left(z f^{\prime \prime}(z)-2\right)+(\gamma(\lambda+1)+\lambda) f^{\prime}(z)+(1-\lambda)(1-\gamma) \frac{f(z)}{z}-1\right]\right)\right|  \tag{2.1}\\
& <\frac{\alpha \pi}{2}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\arg \left(1+\frac{1}{\delta}\left[\lambda \gamma\left(w g^{\prime \prime}(w)-2\right)+(\gamma(\lambda+1)+\lambda) g^{\prime}(w)+(1-\lambda)(1-\gamma) \frac{g(w)}{w}-1\right]\right)\right|  \tag{2.2}\\
& <\frac{\alpha \pi}{2}
\end{align*}
$$

$$
(z, w \in U, 0<\alpha \leq 1, \lambda \geq 0,0 \leq \gamma \leq 1, \delta \in \mathbb{C} \backslash\{0\}, m \in \mathbb{N})
$$

where the function $g=f^{-1}$ is given by (1.4).
Remark 2.1. It should be remarked that the class $\mathcal{W S}_{\Sigma_{m}}(\lambda, \gamma, \delta ; \alpha)$ is a generalization of well-known classes consider earlier. These classes are:
(1) For $\gamma=0$, the class $\mathcal{W}_{\Sigma_{\Sigma_{m}}}(\lambda, \gamma, \delta ; \alpha)$ reduce to the class $\mathcal{B}_{\Sigma_{m}}(\tau, \lambda ; \alpha)$ which was introduced recently by Srivastava et al. [13];
(2) For $\gamma=0$ and $\delta=1$, the class $\mathcal{W} \mathcal{S}_{\Sigma_{m}}(\lambda, \gamma, \delta ; \alpha)$ reduce to the class $\mathcal{A}_{\Sigma, m}^{\alpha, \lambda}$ which was investigated recently by Eker [5];
(3) For $\gamma=0$ and $\lambda=\delta=1$, the class $\mathcal{W S}_{\Sigma_{m}}(\lambda, \gamma, \delta ; \alpha)$ reduce to the class $\mathcal{H}_{\Sigma, m}^{\alpha}$ which was given by Srivastava et al. [16].

Remark 2.2. For one-fold symmetric bi-univalent functions, we denote the class $\mathcal{W S}_{\Sigma_{1}}(\lambda, \gamma, \delta ; \alpha)=\mathcal{W} \mathcal{S}_{\Sigma}(\lambda, \gamma, \delta ; \alpha)$. Special cases of this class illustrated below:
(1) For $\gamma=0$ and $\delta=1$, the class $\mathcal{W S}_{\Sigma}(\lambda, \gamma, \delta ; \alpha)$ reduce to the class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$ which was investigated recently by Frasin and Aouf [6];
(2) For $\gamma=0$ and $\lambda=\delta=1$, the class $\mathcal{W S}_{\Sigma}(\lambda, \gamma, \delta ; \alpha)$ reduce to the class $\mathcal{H}_{\Sigma}^{\alpha}$ which was given by Srivastava et al. [15].

Theorem 2.1. Let $f \in \mathcal{W} \mathcal{S}_{\Sigma_{m}}(\lambda, \gamma, \delta ; \alpha)(0<\alpha \leq 1, \lambda \geq 0,0 \leq \gamma \leq 1, \delta \in \mathbb{C} \backslash\{0\}$, $m \in \mathbb{N}$ ) be given by (1.3). Then
$\left|a_{m+1}\right| \leq \frac{2 \alpha|\delta|}{\sqrt{|\alpha \delta(m+1)[\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1]+(1-\alpha) \Omega(\lambda, \gamma, m)|}}$
and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}|\delta|^{2}(m+1)}{\Omega(\lambda, \gamma, m)}+\frac{2 \alpha|\delta|}{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}, \tag{2.4}
\end{equation*}
$$

where

$$
\Omega(\lambda, \gamma, m)=\left[\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1\right]^{2} .
$$

Proof. It follows from conditions (2.1) and (2.2) that

$$
\begin{align*}
& 1+\frac{1}{\delta}\left[\lambda \gamma\left(z f^{\prime \prime}(z)-2\right)+(\gamma(\lambda+1)+\lambda) f^{\prime}(z)+(1-\lambda)(1-\gamma) \frac{f(z)}{z}-1\right]  \tag{2.5}\\
& =[p(z)]^{\alpha}
\end{align*}
$$

and

$$
\begin{align*}
& 1+\frac{1}{\delta}\left[\lambda \gamma\left(w g^{\prime \prime}(w)-2\right)+(\gamma(\lambda+1)+\lambda) g^{\prime}(w)+(1-\lambda)(1-\gamma) \frac{g(w)}{w}-1\right]  \tag{2.6}\\
& =[q(w)]^{\alpha},
\end{align*}
$$

where $g=f^{-1}$ and $p, q$ in $\mathcal{P}$ have the following series representations:

$$
\begin{equation*}
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+q_{3 m} w^{3 m}+\cdots . \tag{2.8}
\end{equation*}
$$

Comparing the corresponding coefficients of (2.5) and (2.6) yields

$$
\begin{equation*}
\frac{\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1}{\delta} a_{m+1}=\alpha p_{m} \tag{2.9}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}{\delta} a_{2 m+1}=\alpha p_{2 m}+\frac{\alpha(\alpha-1)}{2} p_{m}^{2},  \tag{2.10}\\
-\frac{\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1}{\delta} a_{m+1}=\alpha q_{m} \tag{2.11}
\end{gather*}
$$

and

$$
\begin{align*}
& \frac{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}{\delta}\left((m+1) a_{m+1}^{2}-a_{2 m+1}\right)  \tag{2.12}\\
& =\alpha q_{2 m}+\frac{\alpha(\alpha-1)}{2} q_{m}^{2} .
\end{align*}
$$

In view of (2.9) and (2.11), we find that

$$
\begin{equation*}
p_{m}=-q_{m} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2\left[\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1\right]^{2}}{\delta^{2}} a_{m+1}^{2}=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right) . \tag{2.14}
\end{equation*}
$$

Also, from (2.10), (2.12) and (2.14), we obtain

$$
\begin{aligned}
& (m+1) \frac{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}{\delta} a_{m+1}^{2} \\
& =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}+q_{m}^{2}\right) \\
& =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{(\alpha-1)\left[\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1\right]^{2}}{\alpha \delta^{2}} a_{m+1}^{2} .
\end{aligned}
$$

Therefore, we have
(2.15)

$$
a_{m+1}^{2}=\frac{\alpha^{2} \delta^{2}\left(p_{2 m}+q_{2 m}\right)}{\alpha \delta(m+1)[\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1]+(1-\alpha) \Omega(\lambda, \gamma, m)} .
$$

Now, taking the absolute value of (2.15) and applying Lemma 1.1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we deduce that

$$
\left|a_{m+1}\right| \leq \frac{2 \alpha|\delta|}{\sqrt{|\alpha \delta(m+1)[\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1]+(1-\alpha) \Omega(\lambda, \gamma, m)|}} .
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (2.3).
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (2.12) from (2.10), we get

$$
\begin{align*}
& \frac{2[\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1]}{\delta} a_{2 m+1} \\
& -(m+1) \frac{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}{\delta} a_{m+1}^{2} \\
& =\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right) \tag{2.16}
\end{align*}
$$

It follows from (2.13), (2.14) and (2.16) that

$$
\begin{equation*}
a_{2 m+1}=\frac{\alpha^{2} \delta^{2}(m+1)\left(p_{m}^{2}+q_{m}^{2}\right)}{4 \Omega(\lambda, \gamma, m)}+\frac{\alpha \delta\left(p_{2 m}-q_{2 m}\right)}{2[\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1]} . \tag{2.17}
\end{equation*}
$$

Taking the absolute value of (2.17) and applying Lemma 1.1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}|\delta|^{2}(m+1)}{\Omega(\lambda, \gamma, m)}+\frac{2 \alpha|\delta|}{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}
$$

which completes the proof of Theorem 2.1.
Remark 2.3. In Theorem 2.1, if we choose
(1) $\gamma=0$, then we obtain the results which was proven by Srivastava et al. [13, Theorem 2.1];
(2) $\gamma=0$ and $\delta=1$, then we obtain the results which was obtained by Eker [5, Theorem 1];
(3) $\gamma=0$ and $\lambda=\delta=1$, then we obtain the results which was given by Srivastava et al. [16, Theorem 2].

For one-fold symmetric bi-univalent functions, Theorem 2.1 reduce to the following corollary:
Corollary 2.1. Let $f \in \mathcal{W} \mathcal{S}_{\Sigma}(\lambda, \gamma, \delta ; \alpha)(0<\alpha \leq 1, \lambda \geq 0,0 \leq \gamma \leq 1, \delta \in \mathbb{C} \backslash\{0\})$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha|\delta|}{\sqrt{\left|2 \alpha \delta(2 \gamma(5 \lambda+1)+2 \lambda+1)+(1-\alpha)(\gamma(5 \lambda+1)+\lambda+1)^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}|\delta|^{2}}{(\gamma(5 \lambda+1)+\lambda+1)^{2}}+\frac{2 \alpha|\delta|}{(2 \gamma(5 \lambda+1)+2 \lambda+1)}
$$

Remark 2.4. In Corollary 2.1, if we choose
(1) $\gamma=0$ and $\delta=1$, then we obtain the results which was proven by Frasin and Aouf [6, Theorem 2.2];
(2) $\gamma=0$ and $\lambda=\delta=1$, then we obtain the results which was given by Srivastava et al. [16, Theorem 1].

## 3. Coefficient Estimates for the Functions Class $\mathcal{W S}_{\Sigma_{m}}^{*}(\lambda, \gamma, \delta ; \beta)$

Definition 3.1. A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the class $\mathcal{W S}_{\Sigma_{m}}^{*}(\lambda, \gamma, \delta ; \beta)$ if it satisfies the following conditions:
(3.1)

$$
\operatorname{Re}\left\{1+\frac{1}{\delta}\left[\lambda \gamma\left(z f^{\prime \prime}(z)-2\right)+(\gamma(\lambda+1)+\lambda) f^{\prime}(z)+(1-\lambda)(1-\gamma) \frac{f(z)}{z}-1\right]\right\}>\beta
$$

and
(3.2)

$$
\begin{gathered}
\operatorname{Re}\left\{1+\frac{1}{\delta}\left[\lambda \gamma\left(w g^{\prime \prime}(w)-2\right)+(\gamma(\lambda+1)+\lambda) g^{\prime}(w)+(1-\lambda)(1-\gamma) \frac{g(w)}{w}-1\right]\right\}>\beta, \\
(z, w \in U, 0 \leq \beta<1, \lambda \geq 0,0 \leq \gamma \leq 1, \delta \in \mathbb{C} \backslash\{0\}, m \in \mathbb{N}),
\end{gathered}
$$

where the function $g=f^{-1}$ is given by (1.4).
Remark 3.1. It should be remarked that the class $\mathcal{W} \mathcal{\Sigma}_{\Sigma_{m}}^{*}(\lambda, \gamma, \delta ; \beta)$ is a generalization of well-known classes consider earlier. These classes are:
(1) For $\gamma=0$, the class $\mathcal{W} \mathcal{S}_{\Sigma_{m}}^{*}(\lambda, \gamma, \delta ; \beta)$ reduce to the class $\mathcal{B}_{\Sigma_{m}}^{*}(\tau, \lambda ; \beta)$ which was introduced recently by Srivastava et al. [13];
(2) For $\gamma=0$ and $\delta=1$, the class $\mathcal{W S}_{\Sigma_{m}}^{*}(\lambda, \gamma, \delta ; \beta)$ reduce to the class $\mathcal{A}_{\Sigma, m}^{\lambda}(\beta)$ which was investigated recently by Eker [5];
(3) For $\gamma=0$ and $\lambda=\delta=1$, the class $\mathcal{W} \mathcal{S}_{\Sigma_{m}}^{*}(\lambda, \gamma, \delta ; \beta)$ reduce to the class $\mathcal{H}_{\Sigma, m}(\beta)$ which was given by Srivastava et al. [16].

Remark 3.2. For one-fold symmetric bi-univalent functions, we denote the class $\mathcal{W} \mathcal{S}_{\Sigma_{1}}^{*}(\lambda, \gamma, \delta ; \beta)=\mathcal{W} \mathcal{S}_{\Sigma}^{*}(\lambda, \gamma, \delta ; \beta)$. Special cases of this class illustrated below:
(1) For $\gamma=0$ and $\delta=1$, the class $\mathcal{W} \mathcal{S}_{\Sigma}^{*}(\lambda, \gamma, \delta ; \beta)$ reduce to the class $\mathcal{B}_{\Sigma}(\beta, \lambda)$ which was investigated recently by Frasin and Aouf [6];
(2) For $\gamma=0$ and $\lambda=\delta=1$, the class $\mathcal{W} \mathcal{S}_{\Sigma}^{*}(\lambda, \gamma, \delta ; \beta)$ reduce to the class $\mathcal{H}_{\Sigma}(\beta)$ which was given by Srivastava et al. [15].

Theorem 3.1. Let $f \in \mathcal{W} \mathcal{S}_{\Sigma_{m}}^{*}(\lambda, \gamma, \delta ; \beta)(0 \leq \beta<1, \lambda \geq 0,0 \leq \gamma \leq 1, \delta \in \mathbb{C} \backslash\{0\}$, $m \in \mathbb{N}$ ) be given by (1.3). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq 2 \sqrt{\frac{|\delta|(1-\beta)}{(m+1)[\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1]}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{2 m+1}\right| & \leq \frac{2|\delta|^{2}(1-\beta)^{2}(m+1)}{\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1}  \tag{3.4}\\
& +\frac{2|\delta|(1-\beta)}{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1} .
\end{align*}
$$

Proof. It follows from conditions (3.1) and (3.2) that there exist $p, q \in \mathcal{P}$ such that

$$
\begin{align*}
& 1+\frac{1}{\delta}\left[\lambda \gamma\left(z f^{\prime \prime}(z)-2\right)+(\gamma(\lambda+1)+\lambda) f^{\prime}(z)+(1-\lambda)(1-\gamma) \frac{f(z)}{z}-1\right]  \tag{3.5}\\
& =\beta+(1-\beta) p(z)
\end{align*}
$$

and

$$
\begin{align*}
& 1+\frac{1}{\delta}\left[\lambda \gamma\left(w g^{\prime \prime}(w)-2\right)+(\gamma(\lambda+1)+\lambda) g^{\prime}(w)+(1-\lambda)(1-\gamma) \frac{g(w)}{w}-1\right]  \tag{3.6}\\
& =\beta+(1-\beta) q(w),
\end{align*}
$$

where $p(z)$ and $q(w)$ have the forms (2.7) and (2.8), respectively. Equating coefficients (3.5) and (3.6) yields

$$
\begin{equation*}
\frac{\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1}{\delta} a_{m+1}=(1-\beta) p_{m}, \tag{3.7}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}{\delta} a_{2 m+1}=(1-\beta) p_{2 m},  \tag{3.8}\\
& -\frac{\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1}{\delta} a_{m+1}=(1-\beta) q_{m} \tag{3.9}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}{\delta}\left((m+1) a_{m+1}^{2}-a_{2 m+1}\right)=(1-\beta) q_{2 m} . \tag{3.10}
\end{equation*}
$$

From (3.7) and (3.9), we get

$$
\begin{equation*}
p_{m}=-q_{m} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2\left[\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1\right]^{2}}{\delta^{2}} a_{m+1}^{2}=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right) . \tag{3.12}
\end{equation*}
$$

Adding (3.8) and (3.10), we obtain

$$
(m+1) \frac{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}{\delta} a_{m+1}^{2}=(1-\beta)\left(p_{2 m}+q_{2 m}\right)
$$

Therefore, we have

$$
a_{m+1}^{2}=\frac{\delta(1-\beta)\left(p_{2 m}+q_{2 m}\right)}{(m+1)[\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1]}
$$

Applying Lemma 1.1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq 2 \sqrt{\frac{|\delta|(1-\beta)}{(m+1)[\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1]}}
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (3.3).
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (3.10) from (3.8), we get

$$
\begin{aligned}
& \frac{2[\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1]}{\delta} a_{2 m+1} \\
& -(m+1) \frac{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}{\delta} a_{m+1}^{2}=(1-\beta)\left(p_{2 m}-q_{2 m}\right),
\end{aligned}
$$

or equivalently

$$
a_{2 m+1}=\frac{m+1}{2} a_{m+1}^{2}+\frac{\delta(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{2[\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1]}
$$

Upon substituting the value of $a_{m+1}^{2}$ from (3.12), it follows that

$$
\begin{aligned}
a_{2 m+1} & =\frac{\delta^{2}(1-\beta)^{2}(m+1)\left(p_{m}^{2}+q_{m}^{2}\right)}{4\left[\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1\right]} \\
& +\frac{\delta(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{2\left[\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1\right]}
\end{aligned}
$$

Applying Lemma 1.1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\begin{aligned}
\left|a_{2 m+1}\right| & \leq \frac{2|\delta|^{2}(1-\beta)^{2}(m+1)}{\lambda \gamma\left((m+1)^{2}+1\right)+m(\lambda+\gamma)+1} \\
& +\frac{2|\delta|(1-\beta)}{\lambda \gamma(4 m(m+1)+2)+2 m(\lambda+\gamma)+1}
\end{aligned}
$$

which completes the proof of Theorem 3.1.

Remark 3.3. In Theorem 3.1, if we choose
(1) $\gamma=0$, then we obtain the results which was proven by Srivastava et al. [13, Theorem 3.1];
(2) $\gamma=0$ and $\delta=1$, then we obtain the results which was obtained by Eker [5, Theorem 2];
(3) $\gamma=0$ and $\lambda=\delta=1$, then we obtain the results which was given by Srivastava et al. [16, Theorem 3].

For one-fold symmetric bi-univalent functions, Theorem 3.1 reduce to the following corollary:

Corollary 3.1. Let $f \in \mathcal{W} S_{\Sigma}^{*}(\lambda, \gamma, \delta ; \beta)(0 \leq \beta<1, \lambda \geq 0,0 \leq \gamma \leq 1, \delta \in \mathbb{C} \backslash\{0\})$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2|\delta|(1-\beta)}{2 \gamma(5 \lambda+1)+2 \lambda+1}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4|\delta|^{2}(1-\beta)^{2}}{\gamma(5 \lambda+1)+\lambda+1}+\frac{2|\delta|(1-\beta)}{2 \gamma(5 \lambda+1)+2 \lambda+1}
$$

Remark 3.4. In Corollary 3.1, if we choose
(1) $\gamma=0$ and $\delta=1$, then we obtain the results which was proven by Frasin and Aouf [6, Theorem 3.2];
(2) $\gamma=0$ and $\lambda=\delta=1$, then we obtain the results which was given by Srivastava et al. [15, Theorem 2].

## References

[1] S. Altinkaya and S. Yalcin, Coefficient bounds for certain subclasses of $m$-fold symmetric biunivalent functions, J. Math., (2015), Art. ID 241683, 5 pp.
[2] S. Altinkaya and S. Yalcin, On some subclasses of $m$-fold symmetric bi-univalent functions, Commun. Fac. Sci. Univ. Ank. Series A1, 67(1)(2018), 29-36.
[3] M. Caglar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math., 41(2017), 694-706.
[4] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[5] S. S. Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math., 40(2016), 641-646.
[6] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
[7] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of biunivalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20(2012), 179-182.
[8] W. Koepf, Coefficients of symmetric functions of bounded boundary rotation, Proc. Amer. Math. Soc., 105(1989), 324-329.
[9] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23(2015), 242-246.
[10] H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(5)(2013), 831842.
[11] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845.
[12] H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc., 44(1)(2018), 149-157.
[13] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of $m$-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B, 36(3)(2016), 863-871.
[14] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28(2017), 693-706.
[15] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
[16] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2)(2014), 1-10.
[17] H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal., 10(2016), 1063-1092.
[18] A. K. Wanas and A. H. Majeed, Certain new subclasses of analytic and m-fold symmetric bi-univalent functions, Appl. Math. E-Notes, 18(2018), 178-188.

