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Abstract. In the present investigation, we define two new subclasses of analytic and

m-fold symmetric bi-univalent functions defined by a linear combination in the open unit

disk U . Furthermore, for functions in each of the subclasses introduced here, we establish

upper bounds for the initial coefficients |am+1| and |a2m+1|. Also, we indicate certain

special cases for our results.

1. Introduction

Let A stands the class of functions f that are analytic in the open unit disk
U = {z ∈ C : |z| < 1}, are normalized by the conditions f(0) = f ′(0) − 1 = 0, and
have the form:

(1.1) f(z) = z +

∞∑
k=2

akz
k.

Let S be the subclass of A consisting of functions of the form (1.1) which are
also univalent in U . The Koebe one-quarter theorem (see [4]) states that the image
of U under every function f ∈ S contains a disk of radius 1

4 . Therefore, every
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function f ∈ S has an inverse f−1 which satisfies f−1(f(z)) = z, (z ∈ U) and
f(f−1(w)) = w, (|w| < r0(f), r0(f) ≥ 1

4 ), where

(1.2) g(w) = f−1(w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U . We denote by Σ the class of bi-univalent functions in U satisfying (1.1). In
fact, Srivastava et al. [15] has apparently revived the study of analytic and bi-
univalent functions in recent years, it was followed by such works as those by Frasin
and Aouf [6], Goyal and Goswami [7], Srivastava and Bansal [9] and others (see, for
example [3, 10, 11, 12, 14]).

For each function f ∈ S, the function h(z) = (f(zm))
1
m , (z ∈ U,m ∈ N)

is univalent and maps the unit disk U into a region with m-fold symmetry. A
function is said to be m-fold symmetric (see [8]) if it has the following normalized
form:

(1.3) f(z) = z +

∞∑
k=1

amk+1z
mk+1, (z ∈ U,m ∈ N).

We denote by Sm the class of m-fold symmetric univalent functions in U , which
are normalized by the series expansion (1.3). In fact, the functions in the class S
are one-fold symmetric.

In [16] Srivastava et al. defined m-fold symmetric bi-univalent functions ana-
logues to the concept of m-fold symmetric univalent functions. They gave some
important results, such as each function f ∈ Σ generates an m-fold symmetric bi-
univalent function for each m ∈ N. Furthermore, for the normalized form of f given
by (1.3), they obtained the series expansion for f−1 as follows:

g(w) = w − am+1w
m+1 +

[
(m+ 1)a2

m+1 − a2m+1

]
w2m+1

−
[

1

2
(m+ 1)(3m+ 2)a3

m+1 − (3m+ 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · · ,(1.4)

where f−1 = g. We denote by Σm the class of m-fold symmetric bi-univalent
functions in U . It is easily seen that for m = 1, the formula (1.4) coincides with
the formula (1.2) of the class Σ. Some examples of m-fold symmetric bi-univalent
functions are given as follows:(

zm

1− zm

) 1
m

,

[
1

2
log

(
1 + zm

1− zm

)] 1
m

and [− log (1− zm)]
1
m

with the corresponding inverse functions(
wm

1 + wm

) 1
m

,

(
e2wm − 1

e2wm + 1

) 1
m

and

(
ew

m − 1

ewm

) 1
m

,
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respectively.
Recently, many authors investigated bounds for various subclasses of m-fold

bi-univalent functions (see [1, 2, 5, 13, 16, 17, 18]).
The purpose of the present paper is to introduce the new subclasses WSΣm(λ, γ,

δ; α) and WS∗Σm
(λ, γ, δ;β) of Σm, which involve a linear combination of the following

three expressions
f(z)

z
, f ′(z) and zf ′′(z)

and find estimates on the coefficients |am+1| and |a2m+1| for functions in each of
these new subclasses.

In order to prove our main results, we require the following lemma.

Lemma 1.1.([4]) If h ∈ P, then |ck| ≤ 2 for each k ∈ N, where P is the family of
all functions h analytic in U for which

Re (h(z)) > 0, (z ∈ U),

where
h(z) = 1 + c1z + c2z

2 + · · · , (z ∈ U).

2. Coefficient Estimates for the Function Class WSΣm(λ, γ, δ;α)

Definition 2.1. A function f ∈ Σm given by (1.3) is said to be in the class
WSΣm

(λ, γ, δ;α) if it satisfies the following conditions:∣∣∣∣arg(1 +
1

δ

[
λγ

(
zf ′′(z)− 2

)
+ (γ(λ+ 1) + λ) f ′(z) + (1− λ) (1− γ)

f(z)

z
− 1

])∣∣∣∣(2.1)

<
απ

2
,

and

∣∣∣∣arg(1 +
1

δ

[
λγ

(
wg′′(w)− 2

)
+ (γ(λ+ 1) + λ) g′(w) + (1− λ) (1− γ)

g(w)

w
− 1

])∣∣∣∣
(2.2)

<
απ

2
,

(z, w ∈ U, 0 < α ≤ 1, λ ≥ 0, 0 ≤ γ ≤ 1, δ ∈ C\ {0} , m ∈ N) ,

where the function g = f−1 is given by (1.4).

Remark 2.1. It should be remarked that the class WSΣm(λ, γ, δ;α) is a general-
ization of well-known classes consider earlier. These classes are:

(1) For γ = 0, the class WSΣm
(λ, γ, δ;α) reduce to the class BΣm

(τ, λ;α) which
was introduced recently by Srivastava et al. [13];

(2) For γ = 0 and δ = 1, the class WSΣm
(λ, γ, δ;α) reduce to the class A

α,λ
Σ,m

which was investigated recently by Eker [5];
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(3) For γ = 0 and λ = δ = 1, the class WSΣm
(λ, γ, δ;α) reduce to the class Hα

Σ,m

which was given by Srivastava et al. [16].

Remark 2.2. For one-fold symmetric bi-univalent functions, we denote the class
WSΣ1

(λ, γ, δ;α) = WSΣ(λ, γ, δ;α). Special cases of this class illustrated below:

(1) For γ = 0 and δ = 1, the class WSΣ(λ, γ, δ;α) reduce to the class BΣ(α, λ)
which was investigated recently by Frasin and Aouf [6];

(2) For γ = 0 and λ = δ = 1, the class WSΣ(λ, γ, δ;α) reduce to the class Hα
Σ

which was given by Srivastava et al. [15].

Theorem 2.1. Let f ∈WSΣm(λ, γ, δ;α) (0 < α ≤ 1, λ ≥ 0, 0 ≤ γ ≤ 1, δ ∈ C\ {0} ,
m ∈ N) be given by (1.3). Then
(2.3)

|am+1| ≤
2α |δ|√

|αδ(m+ 1) [λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1] + (1− α)Ω(λ, γ,m)|

and

(2.4) |a2m+1| ≤
2α2 |δ|2 (m+ 1)

Ω(λ, γ,m)
+

2α |δ|
λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1

,

where

Ω(λ, γ,m) =
[
λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1
]2
.

Proof. It follows from conditions (2.1) and (2.2) that

1 +
1

δ

[
λγ (zf ′′(z)− 2) + (γ(λ+ 1) + λ) f ′(z) + (1− λ) (1− γ)

f(z)

z
− 1

]
(2.5)

= [p(z)]
α

and

1 +
1

δ

[
λγ (wg′′(w)− 2) + (γ(λ+ 1) + λ) g′(w) + (1− λ) (1− γ)

g(w)

w
− 1

]
(2.6)

= [q(w)]
α
,

where g = f−1 and p, q in P have the following series representations:

(2.7) p(z) = 1 + pmz
m + p2mz

2m + p3mz
3m + · · ·

and

(2.8) q(w) = 1 + qmw
m + q2mw

2m + q3mw
3m + · · · .
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Comparing the corresponding coefficients of (2.5) and (2.6) yields

(2.9)
λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1

δ
am+1 = αpm,

(2.10)
λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1

δ
a2m+1 = αp2m +

α(α− 1)

2
p2
m,

(2.11) −
λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1

δ
am+1 = αqm

and

λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1

δ

(
(m+ 1)a2

m+1 − a2m+1

)
(2.12)

= αq2m +
α(α− 1)

2
q2
m.

In view of (2.9) and (2.11), we find that

(2.13) pm = −qm

and

(2.14)
2
[
λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1
]2

δ2
a2
m+1 = α2(p2

m + q2
m).

Also, from (2.10), (2.12) and (2.14), we obtain

(m+ 1)
λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1

δ
a2
m+1

= α(p2m + q2m) +
α(α− 1)

2

(
p2
m + q2

m

)
= α(p2m + q2m) +

(α− 1)
[
λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1
]2

αδ2
a2
m+1.

Therefore, we have
(2.15)

a2
m+1 =

α2δ2(p2m + q2m)

αδ(m+ 1) [λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1] + (1− α)Ω(λ, γ,m)
.

Now, taking the absolute value of (2.15) and applying Lemma 1.1 for the coefficients
p2m and q2m, we deduce that

|am+1| ≤
2α |δ|√

|αδ(m+ 1) [λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1] + (1− α)Ω(λ, γ,m)|
.
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This gives the desired estimate for |am+1| as asserted in (2.3).
In order to find the bound on |a2m+1|, by subtracting (2.12) from (2.10), we get

2 [λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1]

δ
a2m+1

− (m+ 1)
λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1

δ
a2
m+1

= α (p2m − q2m) +
α(α− 1)

2

(
p2
m − q2

m

)
.(2.16)

It follows from (2.13), (2.14) and (2.16) that
(2.17)

a2m+1 =
α2δ2(m+ 1)

(
p2
m + q2

m

)
4Ω(λ, γ,m)

+
αδ (p2m − q2m)

2 [λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1]
.

Taking the absolute value of (2.17) and applying Lemma 1.1 once again for the
coefficients pm, p2m, qm and q2m, we obtain

|a2m+1| ≤
2α2 |δ|2 (m+ 1)

Ω(λ, γ,m)
+

2α |δ|
λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1

,

which completes the proof of Theorem 2.1. 2

Remark 2.3. In Theorem 2.1, if we choose

(1) γ = 0, then we obtain the results which was proven by Srivastava et al. [13,
Theorem 2.1];

(2) γ = 0 and δ = 1, then we obtain the results which was obtained by Eker [5,
Theorem 1];

(3) γ = 0 and λ = δ = 1, then we obtain the results which was given by Srivastava
et al. [16, Theorem 2].

For one-fold symmetric bi-univalent functions, Theorem 2.1 reduce to the fol-
lowing corollary:

Corollary 2.1. Let f ∈WSΣ(λ, γ, δ;α) (0 < α ≤ 1, λ ≥ 0, 0 ≤ γ ≤ 1, δ ∈ C\ {0})
be given by (1.1). Then

|a2| ≤
2α |δ|√∣∣∣2αδ (2γ (5λ+ 1) + 2λ+ 1) + (1− α) (γ (5λ+ 1) + λ+ 1)

2
∣∣∣

and

|a3| ≤
4α2 |δ|2

(γ (5λ+ 1) + λ+ 1)
2 +

2α |δ|
(2γ (5λ+ 1) + 2λ+ 1)

,
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Remark 2.4. In Corollary 2.1, if we choose

(1) γ = 0 and δ = 1, then we obtain the results which was proven by Frasin and
Aouf [6, Theorem 2.2];

(2) γ = 0 and λ = δ = 1, then we obtain the results which was given by Srivastava
et al. [16, Theorem 1].

3. Coefficient Estimates for the Functions Class WS∗Σm
(λ, γ, δ;β)

Definition 3.1. A function f ∈ Σm given by (1.3) is said to be in the class
WS∗Σm

(λ, γ, δ;β) if it satisfies the following conditions:
(3.1)

Re

{
1 +

1

δ

[
λγ

(
zf ′′(z)− 2

)
+ (γ(λ+ 1) + λ) f ′(z) + (1− λ) (1− γ)

f(z)

z
− 1

]}
> β,

and
(3.2)

Re

{
1 +

1

δ

[
λγ

(
wg′′(w)− 2

)
+ (γ(λ+ 1) + λ) g′(w) + (1− λ) (1− γ)

g(w)

w
− 1

]}
> β,

(z, w ∈ U, 0 ≤ β < 1, λ ≥ 0, 0 ≤ γ ≤ 1, δ ∈ C\ {0} , m ∈ N) ,

where the function g = f−1 is given by (1.4).

Remark 3.1. It should be remarked that the class WS∗Σm
(λ, γ, δ;β) is a general-

ization of well-known classes consider earlier. These classes are:

(1) For γ = 0, the class WS∗Σm
(λ, γ, δ;β) reduce to the class B∗Σm

(τ, λ;β) which
was introduced recently by Srivastava et al. [13];

(2) For γ = 0 and δ = 1, the class WS∗Σm
(λ, γ, δ;β) reduce to the class AλΣ,m(β)

which was investigated recently by Eker [5];

(3) For γ = 0 and λ = δ = 1, the class WS∗Σm
(λ, γ, δ;β) reduce to the class

HΣ,m(β) which was given by Srivastava et al. [16].

Remark 3.2. For one-fold symmetric bi-univalent functions, we denote the class
WS∗Σ1

(λ, γ, δ;β) = WS∗Σ(λ, γ, δ;β). Special cases of this class illustrated below:

(1) For γ = 0 and δ = 1, the class WS∗Σ(λ, γ, δ;β) reduce to the class BΣ(β, λ)
which was investigated recently by Frasin and Aouf [6];

(2) For γ = 0 and λ = δ = 1, the class WS∗Σ(λ, γ, δ;β) reduce to the class HΣ(β)
which was given by Srivastava et al. [15].

Theorem 3.1. Let f ∈WS∗Σm
(λ, γ, δ;β) (0 ≤ β < 1, λ ≥ 0, 0 ≤ γ ≤ 1, δ ∈ C\ {0} ,

m ∈ N) be given by (1.3). Then

(3.3) |am+1| ≤ 2

√
|δ| (1− β)

(m+ 1) [λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1]
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and

|a2m+1| ≤
2 |δ|2 (1− β)

2
(m+ 1)

λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1
(3.4)

+
2 |δ| (1− β)

λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1
.

Proof. It follows from conditions (3.1) and (3.2) that there exist p, q ∈ P such that

1 +
1

δ

[
λγ (zf ′′(z)− 2) + (γ(λ+ 1) + λ) f ′(z) + (1− λ) (1− γ)

f(z)

z
− 1

]
(3.5)

= β + (1− β)p(z)

and

1 +
1

δ

[
λγ (wg′′(w)− 2) + (γ(λ+ 1) + λ) g′(w) + (1− λ) (1− γ)

g(w)

w
− 1

]
(3.6)

= β + (1− β)q(w),

where p(z) and q(w) have the forms (2.7) and (2.8), respectively. Equating coeffi-
cients (3.5) and (3.6) yields

(3.7)
λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1

δ
am+1 = (1− β)pm,

(3.8)
λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1

δ
a2m+1 = (1− β)p2m,

(3.9) −
λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1

δ
am+1 = (1− β)qm

and
(3.10)

λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1

δ

(
(m+ 1)a2

m+1 − a2m+1

)
= (1− β)q2m.

From (3.7) and (3.9), we get

(3.11) pm = −qm

and

(3.12)
2
[
λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1
]2

δ2
a2
m+1 = (1− β)

2
(p2
m + q2

m).
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Adding (3.8) and (3.10), we obtain

(m+ 1)
λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1

δ
a2
m+1 = (1− β)(p2m + q2m).

Therefore, we have

a2
m+1 =

δ(1− β)(p2m + q2m)

(m+ 1) [λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1]
.

Applying Lemma 1.1 for the coefficients p2m and q2m, we obtain

|am+1| ≤ 2

√
|δ| (1− β)

(m+ 1) [λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1]
.

This gives the desired estimate for |am+1| as asserted in (3.3).
In order to find the bound on |a2m+1|, by subtracting (3.10) from (3.8), we get

2 [λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1]

δ
a2m+1

− (m+ 1)
λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1

δ
a2
m+1 = (1− β) (p2m − q2m) ,

or equivalently

a2m+1 =
m+ 1

2
a2
m+1 +

δ(1− β) (p2m − q2m)

2 [λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1]
.

Upon substituting the value of a2
m+1 from (3.12), it follows that

a2m+1 =
δ2 (1− β)

2
(m+ 1)(p2

m + q2
m)

4
[
λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1
]

+
δ (1− β) (p2m − q2m)

2
[
λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1
] .

Applying Lemma 1.1 once again for the coefficients pm, p2m, qm and q2m, we obtain

|a2m+1| ≤
2 |δ|2 (1− β)

2
(m+ 1)

λγ
(

(m+ 1)
2

+ 1
)

+m(λ+ γ) + 1

+
2 |δ| (1− β)

λγ (4m(m+ 1) + 2) + 2m(λ+ γ) + 1
.

which completes the proof of Theorem 3.1. 2
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Remark 3.3. In Theorem 3.1, if we choose

(1) γ = 0, then we obtain the results which was proven by Srivastava et al. [13,
Theorem 3.1];

(2) γ = 0 and δ = 1, then we obtain the results which was obtained by Eker [5,
Theorem 2];

(3) γ = 0 and λ = δ = 1, then we obtain the results which was given by Srivastava
et al. [16, Theorem 3].

For one-fold symmetric bi-univalent functions, Theorem 3.1 reduce to the fol-
lowing corollary:

Corollary 3.1. Let f ∈WS∗Σ(λ, γ, δ;β) (0 ≤ β < 1, λ ≥ 0, 0 ≤ γ ≤ 1, δ ∈ C\ {0})
be given by (1.1). Then

|a2| ≤

√
2 |δ| (1− β)

2γ (5λ+ 1) + 2λ+ 1

and

|a3| ≤
4 |δ|2 (1− β)

2

γ (5λ+ 1) + λ+ 1
+

2 |δ| (1− β)

2γ (5λ+ 1) + 2λ+ 1
.

Remark 3.4. In Corollary 3.1, if we choose

(1) γ = 0 and δ = 1, then we obtain the results which was proven by Frasin and
Aouf [6, Theorem 3.2];

(2) γ = 0 and λ = δ = 1, then we obtain the results which was given by Srivastava
et al. [15, Theorem 2].
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