KYUNGPOOK Math. J. 59(2019), 363-375 https://doi.org/10.5666/KMJ.2019.59.3.363 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Some Cycle and Star Related Nordhaus-Gaddum Type Relations on Strong Efficient Dominating Sets

KARTHIKEYAN MURUGAN

PG and Research Department of Mathematics, The M. D. T. Hindu College and Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, India e-mail: muruganmdt@gmail.com

ABSTRACT. Let G = (V, E) be a simple graph with p vertices and q edges. A subset S of V(G) is called a strong (weak) efficient dominating set of G if for every $v \in V(G)$ we have $|N_s[v] \cap S| = 1$ (resp. $|N_w[v] \cap S| = 1$), where $N_s(v) = \{u \in V(G) : uv \in E(G), deg(u) \ge deg(v)\}$. The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and is denoted by $\gamma_{se}(G)$ ($\gamma_{we}(G)$). A graph G is strong efficient if there exists a strong efficient dominating set of G. In this paper, some cycle and star related Nordhaus-Gaddum type relations on strong efficient dominating sets are studied.

1. Introduction

Throughout this paper only finite, undirected and simple graphs are considered. Let G = (V, E) be a graph with p vertices and q edges. The degree of any vertex u in G is the number of edges incident with u and is denoted by deg(u). The minimum and maximum degree of a vertex is denoted by $\delta(G)$ and $\Delta(G)$ respectively. A vertex of degree 0 in G is called an *isolated vertex* and a vertex of degree 1 in G is called a *pendant vertex*. A subset S of V(G) is called a *dominating set* of G if every vertex in V(G) - S is adjacent to a vertex in S (see [5]). The domination number of a graph G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. Sampathkumar et al. introduced the concepts of strong and weak domination in graphs (see [10]). A subset S of V(G) is called a *strong dominating set* of G if for every $v \in V - S$ there exists a $u \in S$ such that u and v are adjacent and $deg(u) \ge deg(v)$. A subset S of V(G) is called an efficient dominating set of G if for every $v \in V - S$ there exists a $u \in S$ such that u and v are adjacent and $deg(u) \ge deg(v)$.

Received November 22, 2016; revised May 2, 2018; accepted June 8, 2018.

²⁰¹⁰ Mathematics Subject Classification: 05C69.

Key words and phrases: strong efficient dominating sets, strong efficient domination number and number of strong efficient dominating sets.

for every $v \in V(G)$, $|N[v] \cap S| = 1$ (see [1] and [4]).

The concept of strong (weak) efficient domination in graphs was introduced by Meena et al. (see [7]). A subset S of V(G) is called a *strong (weak) efficient dominating set* of G if for every $v \in V(G)$ we have $|N_s[v] \cap S| = 1$ (resp. $|N_w[v] \cap S| =$ 1). Here, $N_s(v)$ denotes the set of all vertices $u \in V(G)$ such that uv is an edge in G and where $deg(u) \geq deg(v)$. The minimum cardinality of a strong (weak) efficient dominating set is called *strong (weak) efficient domination number* and is denoted by $\gamma_{se}(G)$ (resp. $\gamma_{we}(G)$). A graph G is strong efficient if there exists a strong efficient dominating set of G. The number of strong efficient dominating sets of a graph G is donoted by $\#\gamma_{se}(G)$. Murugan et al. studied the Nordhaus-Gaddum type relations on strong efficient dominating sets in [8]. In this paper, some cycle and star related Nordhaus-Gaddum type relations on strong efficient dominating sets are necessary for the present study.

Results.([7, 8])

1.1: $\gamma_{se}(G) = 1$ if and only if G has a full degree vertex.

1.2:
$$\gamma_{se}(K_n) = 1, n \ge 1.$$

- **1.3:** $\gamma_{se}(K_{1,n}) = 1, n \ge 1.$
- **1.4:** $\gamma_{se}(C_{3n}) = n, n \ge 1.$
- **1.5:** Since C_{3n+1} and C_{3n+2} do not have efficient dominating sets, they do not have strong efficient dominating sets.
- **1.6:** If there exists exactly one maximum degree vertex, then any strong efficient dominating set must contain it.

1.7: For any path
$$P_m, \gamma_{se}(P_m) = \begin{cases} n \ if \ m = 3n, n \in N, \\ n+1 \ if \ m = 3n+1, n \in N, \\ n+2 \ if \ m = 3n+2, n \in N. \end{cases}$$

- **1.8:** A graph G does not admit a strong efficient dominating set if the distance between any two maximum degree vertices is exactly two.
- **1.9:** Any strong efficient dominating set is independent.
- **1.10:** The sub division graph S(G) of a graph G is obtained from G by inserting a new vertex into every edge of G.
- **1.11:** $\gamma_{se}[S(C_{3n})] = 2n \text{ for all } n \in N.$
- **1.12:** $\gamma_{se}[S(k_{1,n})] = n + 1$ for all $n \in N$.
- **1.13:** If an efficient graph G of order n is an r-regular, then $\gamma = \frac{n}{r+1}$.

364

1.14: Let G be a graph with a strong efficient dominating number $\gamma_{se}(G)$. The number of distinct strong efficient dominating sets of a graph G is denoted by $\#\gamma_{se}(G)$.

1.15:
$$\#\gamma_{se}(P_m) = \begin{cases} 1 \ if \ m = 3n \ or \ m = 3n+2, \ n \in N \\ 2 \ if \ m = 2 \ or \ m = 3n+1, \ n \in N. \end{cases}$$

1.16: $\#\gamma_{se}(K_n) = n, n \in N.$

1.17: $\#\gamma_{se}(C_{3n}) = 3, n \in N.$

2. Main Results

In this section, line graph, jump graph, semi-total point graph, semi-total line graph, total graph, quasi-vertex total graph and complementary prism are defined. Cycle and start related Nordhaus-Gaddum type relations of strong efficient dominating sets and the number of strong efficient dominating sets are studied.

Definition 2.1.([12]) The *line graph* L(G) of G is the graph whose vertex set is E(G) in which two vertices are adjacent if and only if they are adjacent in G.

The following theorem is established first.

Theorem 2.2. $L(C_n)$ is strong efficient if and only if $n = 3m, m \in N$. Further $\gamma_{se}(C_{3m}) + \gamma_{se}[L(C_{3m})] = 2m$ and $\#\gamma_{se}(C_{3m}) + \#\gamma_{se}[L(C_{3m})] = 6$.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices and $e_i = v_i v_{i+1}$; $1 \le i \le n-1, e_n = v_n v_1$ be the edges of the cycle C_n . Obviously $L(C_n)$ is a C_n with vertices $e_1, e_2, ..., e_n$.

Therefore by Results 1.4 and 1.5, $L(C_n)$ is strong efficient if and only if n = 3m. Therefore $\gamma_{se}(C_{3m}) + \gamma_{se}[L(C_{3m})] = 2m$ and by Result 1.17, $\#\gamma_{se}(C_{3m}) + \#\gamma_{se}[L(C_{3m})] = 6$.

Theorem 2.3. $L(K_{1,n})$ is strong efficient for all $n \ge 1$. Further

$$\gamma_{se}(K_{1,n}) + \gamma_{se}[L(K_{1,n})] = 2 \text{ and } \#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[L(K_{1,n})] = n+1.$$

Proof. $L(K_{1,n})$ is strong efficient for all $n \ge 1$. Further $\gamma_{se}(K_{1,n}) + \gamma_{se}[L(K_{1,n})] = 2$ and $\#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[L(K_{1,n})] = n + 1$. \Box

Now the concept of jump graph of a graph is defined.

Definition 2.4.([2]) The *jump graph* J(G) of G is the graph whose vertex set is E(G) in which two vertices are adjacent if and only if they are non-adjacent in G.

Theorem 2.5. $J(C_n)$ is strong efficient if and only if n = 3 or n = 4. Moreover

$$\gamma_{se}[J(C_n)] = \begin{cases} 3 \ if \ n = 3, \\ 2 \ if \ n = 4, \end{cases} \quad and \quad \#\gamma_{se}[J(C_n)] = \begin{cases} 1 \ if \ n = 3, \\ 4 \ if \ n = 4. \end{cases}$$

Proof. Let $v_1, v_2, ..., v_n$ be vertices of C_n , and $e_i = v_i v_{i+1}$ for all $1 \le i \le n-1$

and $e_n = v_n v_1$ be the edges. Suppose n > 4. For all i with $1 \le i \le n-1$, e_{1i} is adjacent in $J(C_n)$ with all vertices other than e_{i-1} and e_{i+1} , similarly e_n is adjacent with all the vertices other than e_{n-1} and e_1 . Thus $J(C_n)$ is regular of degree n-3. Suppose $J(C_n)$ is strong efficient, and let S be a strong efficient dominating set of $J(C_n)$. Suppose further that $e_1 \in S$. The vertex e_1 strongly dominates all vertices other than e_2 and e_n , which are adjacent. If $e_2 \in S$, then $|N_s[e_4] \cap S| = |\{e_1, e_2\}| = 2 > 1$, which is a contradiction. Therefore $e_2 \notin S$. If $e_n \in S$, then $|N_s[e_3] \cap S| = |\{e_1, e_n\}| = 2 > 1$; also a contradiction. Therefore $e_n \notin S$. This is true for any $e_i \in S, 1 \le i \le n$. Hence $J(C_n)$ is not strong efficient when n > 4.

Conversely suppose $n \leq 4$. Two cases are considered.

Case (i): Suppose n = 3. $J(C_3)$ is $3K_1$ which is obviously strong efficient with the unique strong efficient dominating set $\{e_1, e_2, e_3\}$.

Case (ii): Suppose n = 4. $J(C_4)$ is $2K_2$ for which $\{e_1, e_2\}, \{e_1, e_4\}, \{e_3, e_2\}$ and $\{e_3, e_4\}$ are strong efficient dominating sets.

This completes the proof of the theorem.

Theorem 2.6. $J(K_{1,n})$ is strong efficient for all $n \ge 1$. Moreover

$$\gamma_{se}(K_{1,n}) + \gamma_{se}[J(K_{1,n})] = n+1 \text{ and } \#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[J(K_{1,n})] = 2.$$

Proof. Since $J(K_{1,n})$ is \overline{K}_n , we have $\gamma_{se}[J(K_{1,n})] = n$ and $\#\gamma_{se}[J(K_{1,n})] = 1$. Therefore $\gamma_{se}(K_{1,n}) + \gamma_{se}[J(K_{1,n})] = n + 1$ and $\#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[J(K_{1,n})] = 2$. \Box

Definition 2.7. The paraline graph PL(G) is a line graph of the subdivision graph of G.

Theorem 2.8. $PL(C_n)$ is strong efficient if and only if $n = 3m, m \in N$. Further $\gamma_{se}(C_{3m}) + \gamma_{se}[PL(C_{3m})] = 3m$ and $\#\gamma_{se}(C_{3m}) + \#\gamma_{se}[PL(C_{3m})] = 6$.

Proof. Obviously $PL(C_n)$ is C_{2n} and hence from Results 1.4 and $1.5, \gamma_{se}[PL(C_{3m})] = 2m$ and by Result 1.17, $\#\gamma_{se}[PL(C_{3m})] = 3$. Therefore $\gamma_{se}(C_{3m}) + \gamma_{se}[PL(C_{3m})] = 3m$ and $\#\gamma_{se}(C_{3m}) + \#\gamma_{se}[PL(C_{3m})] = 6$.

Theorem 2.9. $PL[K_{1,n}]$ is strong efficient for all $n \ge 1$. Further

$$\gamma_{se}(K_{1,n}) + \gamma_{se}[PL(K_{1,n})] = n + 1 \text{ and} \\ \#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[PL(K_{1,n})] = \begin{cases} 4 \text{ if } n = 1, \\ n + 1 \text{ if } n > 1. \end{cases}$$

Proof. Let v and v_i for $1 \le i \le n$ be the vertices if $K_{1,n}$ and let vv_i for $1 \le i \le n$ be the edges. Let u_i be the vertice obtained by subdividing the edge vv_i of the star for $1 \le i \le n$. Let $e_i = vu_i$ and $e_{n+1} = u_iv_i$ for $1 \le i \le n$ be the edges of $PL[K_{1,n}]$. Case (i): Suppose n = 1. $PL[K_{1,1}]$ is P_2 which is obviously strong efficient and hence $\gamma_{se}[PL(K_{1,1})] = 1$ and $\#\gamma_{se}[PL(K_{1,1})] = 2$.

Case (ii): Suppose that n > 1, that $\Delta PL[K_{1,n}] = deg(e_i) = n$ for $1 \le i \le n$ and that $deg(e_j) = 1; n + 1 \le j \le 2n$. We see that e_1 is adjacent with the e_j^s for $2 \leq j \leq n+1$. Hence e_1 strongly dominates all of these vertices. Also, the vertices e_{n+j} for $2 \leq j \leq n$ are muthually non-adjacent. Therefore $\{e_1, e_{n+2}, e_{n+3}, \cdots, e_{2n}\}$ is a strong efficient dominating set of $PL[K_{1,n}]$. Similarly $\{e_2, e_{n+1}, e_{n+3}, e_{n+4}, \cdots, e_{2n}\}, \{e_3, e_{n+1}, e_{n+2}, e_{n+4}, e_{n+5}, \cdots, e_{2n}\}, \cdots, \{e_n, e_{n+1}, e_{n+2}, \cdots, e_{2n-1}\}$ is also a strong efficient dominating set of $PL(K_{1,n})$.

Therefore $\gamma_{se}[PL(K_{1,n})] = n$ and $\#\gamma_{se}(PL[K_{1,n}]) = \begin{cases} 2 \ if \ n = 1, \\ n \ if \ n > 1. \end{cases}$

Therefore $\gamma_{se}(K_{1,n}) + \gamma_{se}[PL(K_{1,n})] = n + 1$ and

$$\#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[PL(K_{1,n})] = \begin{cases} 4 \ if \ n = 1, \\ n+1 \ if \ n > 1. \end{cases} \square$$

Definition 2.10.([9]) The semi-total point graph $T_2(G)$ is the graph whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if and only if

- (i) they are adjacent vertices of G or
- (ii) one is a vertex of G and the other is an edge of G incident with it.

Theorem 2.11. $T_2(C_n)$ is strong efficient if and only if n = 3m for $m \in N$. Further

$$\gamma_{se}(C_{3m}) + \gamma_{se}[T_2(C_{3m})] = 3m \text{ and } \#\gamma_{se}(C_{3m}) + \#\gamma_{se}[T_2(C_{3m})] = 6.$$

Proof. Let $v_1, v_2, ..., v_n$ be the vertices and $e_i = v_i v_{i+1}$ for $1 \le i \le n-1$, as well as $e_n = v_n v_1$ be the edges of the cycle C_n . Let $n \ne 3m$. Suppose $T_2(C_n)$ is strong efficient. Let S be a strong efficient dominating set of $T_2(C_n)$.

Case (i): Let n = 3m+1. $\Delta[T_2(C_{3m+1})] = deg(v_i) = 4$, $deg(e_i) = 2; 1 \le i \le 3m+1$. Suppose $v_1 \in S$. We have that v_1 strongly dominates the vertices v_2, v_{3m+1}, e_1 and e_{3m+1} . Similarly v_{3i-2} strongly dominates $v_{3i-3}, v_{3i-1}, e_{3i-3}$ and $e_{3i-2}; 2 \le i \le m$. If $v_{3m} \in S$, then $|N_s[V_{3m+1}] \cap S| = |\{v_1, v_{3m}\}| = 2 > 1$. This is a contradiction. Therefore $v_{3m} \notin S$. Hence there is no vertex in S that strongly efficiently dominates V_{3m} . Hence $T_2(C_{3m+1})$ is not strong efficient.

Case (ii): Let n = 3m + 2, and observe that $\Delta[T_2(C_{3m+2})] = deg(v_i) = 4$ and $deg(e_i) = 2$ for $1 \leq i \leq 3m + 2$. Suppose $v_1 \in S$. The vertex v_1 strongly dominates the vertices v_2, v_{3m+2}, e_1 and e_{3m+2} . Similarly v_{3i-2} strongly dominates $v_{3i-3}, v_{3i-1}, e_{3i-3}$ and e_{3i-2} for $2 \leq i \leq m$. Moreover, v_{3m} and v_{3m+1} are adjacent. Subcase (ii a): Suppose $v_{3m} \in S$. Then $|N_s[V_{3m-1}] \cap S| = |\{v_{3m}, v_{3m-2}\}| = 2 > 1$. This is also a contradicition. Therefore $v_{3m} \notin S$.

Subcase (ii b): Suppose $v_{3m+1} \in S$. Then $|N_s[V_{3m+2}] \cap S| = |\{v_1, v_{3m+1}\}| = 2 > 1$. This is also a contradicition. Therefore $v_{3m+1} \notin S$. Hence there is no vertex in S to strongly efficiently dominate V_{3m+1} . Therefore $T_2(C_n)$ is not strong efficient when n = 3m + 1 or 3m + 2.

Conversely suppose n = 3m. Then $\Delta[T_2(C_{3m})] = deg(v_i) = 4$ and $deg(e_i) = 2$ for $1 \leq i \leq 3m$. Also, e_i^s are non-adjacent. For $1 \leq i \leq m$ the vertex v_{3i-2} strongly dominate all the vertices other than e_{3i-1} . The vertices e_{3i-1} for $1 \leq i \leq m$

 $i \leq m$ are strongly dominated by themselves. Hence $\{v_{3i-2}, e_{3i-1}; 1 \leq i \leq m\}$ is a strong efficient dominating set of $T_2(C_{3m})$. By symmetry, $\{v_{3i-1}, e_{3i}; 1 \leq i \leq m\}$ and $\{v_{3i}, e_{3i-2}; 1 \leq i \leq m\}$ are also strong efficient dominating sets of $T_2(C_n)$.

Therefore $\gamma_{se}[T_2(C_{3m})] = 2m$ and $\#\gamma_{se}[T_2(C_{3m})] = 3$.

Hence $\gamma_{se}(C_{3m}) + \gamma_{se}[T_2(C_{3m})] = 3m$ and $\#\gamma_{se}(C_{3m}) + \#\gamma_{se}[T_2(C_{3m})] = 6.$

Now the following theorem is established.

Theorem 2.12. $T_2(K_{1,n})$ is strong efficient for all $n \ge 1$. Further

$$\gamma_{se}(K_{1,n}) + \gamma_{se}[T_2(K_{1,n})] = 2 \text{ and} \#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[T_2(K_{1,n})] = \begin{cases} 5 \text{ if } n = 1, \\ 2 \text{ if } n > 1. \end{cases}$$

Proof. Let v and v_i for $1 \le i \le n$ be the vertices and $e_i = vv_i$ for $1 \le i \le n$ be the edges of the star $K_{1,n}$.

Case (i): Suppose n = 1. Then $T_2(K_{1,1})$ is the cycle c_3 for which $\{e_1\}, \{v\}, \{v_1\}$ are the strong efficient dominating sets. Hence $\gamma_{se}[T_2(K_{1,1})] = 1$ and $\#\gamma_{se}[T_2(K_{1,1})] = 3$.

Case (ii): Suppose n > 1. In $T_2(K_{1,n}), v$ is adjacent with all the v_i^s and $e_i^s; 1 \le i \le n$. Thus v is the unique full degree vertex. Therefore, by Result 1.1, $\gamma_{se}[T_2(K_{1,n})] = 1$ and $\#\gamma_{se}[T_2(K_{1,n})] = 1$.

Therefore
$$\gamma_{se}(K_{1,n}) + \gamma_{se}[T_2(K_{1,n})] = 2$$
 and
 $\#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[T_2(K_{1,n})] = \begin{cases} 5 \ if \ n = 1, \\ 2 \ if \ n > 1. \end{cases}$

Definition 2.13. ([9]) The semi-total line graph $T_1(G)$ is the graph whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if and only if

- (i) they are adjacent edges of G or
- (ii) one is a vertex of G and the other is an edge of G incident with it.

Theorem 2.14. $T_1(C_n)$ is strong efficient if and only if $n = 3m, m \in N$. Further $\gamma_{se}(C_{3m}) + \gamma_{se}[T_1(C_{3m})] = 3m$ and $\#\gamma_{se}(C_{3m}) + \#\gamma_{se}[T_1(C_{3m})] = 6$.

Proof. $T_1(C_n)$ is obtained from $T_2(C_n)$ by replacing v_i and e_i . Hence the result follows from Theorem 2.11.

Theorem 2.15. $T_1(K_{1,n})$ is strong efficient for all $n \ge 1$. Further

$$\begin{split} \gamma_{se}(K_{1,n}) + \gamma_{se}[T_1(K_{1,n})] &= n+1, \text{ if } n \ge 1 \text{ and} \\ \#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[T_1(K_{1,n})] &= \begin{cases} 3 \text{ if } n = 1, \\ n+1 \text{ if } n > 1. \end{cases} \end{split}$$

Proof. Let v and v_i for $1 \le i \le n$ be the vertices and $e_i = vv_i$ for $1 \le i \le n$ be the edges of the star $K_{1,n}$.

368

 $T_1(K_{1,1})$ is P_3 which is strong efficient and $\gamma_{se}[T_1(K_{1,1})] = 1$. Thus $\#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[T_1(K_{1,n})] = 3$

Suppose $n \ge 2$. In $T_1(K_{1,n})$, we have deg(v) = n, $deg(v)_i = 1$, and $deg(e_i) = n + 1 = \Delta[T_1(K_{1,n})]$ for $1 \le i \le n$. Each e_i strongly uniquely dominates v and all v_i 's for $j \ne i$.

Hence $\{e_i, v_j | j \neq i, 1 \leq j \leq n\}$ for $1 \leq i \leq n$, form strong efficient dominating sets of $T_1(K_{1,n})$. Therefore $T_1(K_{1,n})$ is strong efficient and $\gamma_{se}(K_{1,n}) = n$, if $n \geq 1$. $\#\gamma_{se}[T_1(K_{1,n})] = n$. Hence $\#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[T_1(K_{1,n})] = n + 1$ if n > 1

Definition 2.16. The *total graph* T(G) of a graph G is the graph with vertex set $V(G) \cup E(G)$ where two vertices are adjacent if and only if

- (i) they are adjacent vertices of G or
- (ii) they are adjacent edges of G or
- (iii) one is a vertex of G and the other is an edge of G incident with it.

Theorem 2.17. $T(C_n)$ is strong efficient if and only if $n = 5m, m \in N$. Further $\gamma_{se}[T(C_{5m})] = 2m$ and $\#\gamma_{se}[T(C_{5m})] = 5$.

Proof. Let v_1, v_2, \ldots, v_n be the vertices and $e_i = v_i v_{i+1}$ for $1 \le i \le n-1$ and $e_n = v_n v_1$ be the edges of the cycle C_n . In $T(C_n)$, v_i is adjacent with v_{i+1}, v_{i-1}, e_i and e_{i-1} for $2 \le i \le n-1$. We have that e_i is adjacent with e_{i-1}, e_{i+1}, v_i and v_{i+1} for $2 \le i \le n-1$, and that v_1 is adjacent with v_2, v_n, e_1 and e_n . The vertex v_n is adjacent with v_{n-1}, v_1, e_{n-1} and e_n . The vertex e_1 is adjacent with e_2, e_n, v_1 and v_2 . The vertex e_n is adjacent with v_n, v_1, e_{n-1} and e_1 . Hence $deg(v_i) = deg(e_i) = 4$ for $1 \le i \le n$. Therefore $T(C_n)$ is regular of degree 4. Suppose $n \ne 5m$. Suppose $T(C_n)$ is strong efficient. Let S be a strong efficient dominating set.

Case (i): Let n = 5m + 1. Suppose $v_{5i-4}, e_{5i-2} \in S$ for $1 \le i \le m$. Then v_{5i-4}, e_{5i-2} for $1 \leq i \leq m$ strongly dominates all the vertices other than v_{5m} and e_{5m} . Also v_{5m} and e_{5m} are adjacent. If $v_{5m} \in S$, then $|N_s[V_{5m+1}] \cap S| = |\{v_1, v_{5m}\}| = 2 > 1$. This is a contradicition. Therefore $v_{5m} \notin S$. If $e_{5m} \in S$, then $|N_s[v_{5m+1}] \cap S| =$ $|\{v_1, e_{5m}\}| = 2 > 1$. This is also a contradiction. Therefore $e_{5m} \notin S$. This is for any $v_i \in S$. Therefore $T(C_n)$ is not strong efficient when n = 5m + 1 for $m \in N$. Case (ii): Let n = 5m + 2. Suppose $v_{5i-4}, e_{5i-2} \in S$ for $1 \leq i \leq m$. As before v_{5i-4}, e_{5i-2} for $1 \leq i \leq m$ strongly dominates all the vertices other than v_{5m+1}, v_{5m} and e_{5m} . Also v_{5m+1}, v_{5m} and e_{5m} are mutually adjacent. If $v_{5m+1} \in S$, then $|N_s[V_{5m+2}] \cap S| = |\{v_1, v_{5m+1}\}| = 2 > 1$. This is a contradiction. Therefore $v_{5m+1} \notin S$. If $v_{5m} \in S$, then $|N_s[V_{5m-1}] \cap S| = |\{v_{5m}, e_{5m-2}\}| = 2 > 1$. This is a contradicition. Therefore $v_{5m} \notin S$. If $e_{5m} \in S$, then $|N_s[e_{5m-1}] \cap S| =$ $|\{e_{5m}, e_{5m-2}\}| = 2 > 1$. This is a contradiction. Therefore $e_{5m} \notin S$. If $e_{5m+1} \in$ S, then $|N_s[e_{5m+2}] \cap S| = |\{v_1, e_{5m+1}\}| = 2 > 1$. This is also a contradicition. Therefore $e_{5m+1} \notin S$. Therefore $e_{5m} \notin S$. This is for any $v_i \in S$. Therefore $T(C_n)$ is not strong efficient when $n = 5m + 2, m \in N$.

Case (iii): Let n = 5m + 3. Suppose $v_{5i-4}, e_{5i-2} \in S$ for $1 \leq i \leq m$. Then v_{5i-4}, e_{5i-2} for $1 \leq i \leq m$ strongly dominates all the vertices other than e_{5m+2} . If $e_{5m+2} \in S$, then $|N_s[V_{5m+3}] \cap S| = |\{v_1, e_{5m+2}\}| = 2 > 1$. This is also a contradicition. Therefore $e_{5m+2} \notin S$. Therefore $e_{5m} \notin S$. This is for any $v_i \in S$. Therefore $T(C_n)$ is not strong efficient when $n = 5m + 3, m \in N$.

Case (iv): Let n = 5m + 4. Suppose $v_{5i-4}, e_{5i-2} \in S; 1 \leq i \leq m$. As before $v_{5i-4}, e_{5i-2}; 1 \leq i \leq m$ strongly dominates all the vertices other than v_{5m+3}, e_{5m+2} and e_{5m+3} . If $v_{5m+3} \in S$, then $|N_s[v_{5m+4}] \cap S| = |\{v_1, v_{5m+3}\}| = 2 > 1$. This is a contradiction. Therefore $v_{5m+3} \notin S$. If $e_{5m+2} \in S$, then $|N_s[e_{5m+1}] \cap S| = |\{v_{5m+1}, e_{5m+2}\}| = 2 > 1$. This is also a contradiction. Therefore $e_{5m+2} \notin S$. If $e_{5m+3} \in S$, then $|N_s[v_{5m+4}] \cap S| = |\{e_{5m+3}, v_1\}| = 2 > 1$. This is also a contradiction. Therefore $e_{5m+2} \notin S$. If $e_{5m+3} \in S$, then $|N_s[v_{5m+4}] \cap S| = |\{e_{5m+3}, v_1\}| = 2 > 1$. This is also a contradiction. Therefore $e_{5m+3} \notin S$. Therefore $e_{5m} \notin S$. This is for any $v_i \in S$. Therefore $T(C_n)$ is not strong efficient when $n = 5m + 4, m \in N$.

Case (v): Let n = 4. Suppose $v_1 \in S$. v_1 strongly dominates v_2, v_4, e_1 and e_4 . If e_2 or v_3 belongs to S then v_2 is strongly dominated by two vertices v_1 and e_2 or v_1 and v_3 respectively. If e_3 belongs to S then v_4 is strongly dominated by two vertices v_1 and e_3 . Therefore e_2, e_3 and v_3 do not belong to S. There is no vertex in S to strongly dominate these three vertices, a contradiction. This is true if any v_i or e_i belong to S. Hence $T(C_n)$ is not strong efficient when n = 4.

Case (vi): Let n = 3. Suppose $v_1 \in S$. v_1 strongly dominates all the vertices other than e_2 . If e_2 belongs to S then all the vertices other than v_1 are strongly dominated by two vertices v_1 and e_2 . Therefore $e_2 \notin S$. Hence there is no vertex in S to strongly dominate e_2 , a contradiction. This is true if any v_i or e_i belong to S. Hence $T(C_n)$ is not strong efficient when n = 3.

Conversely suppose n = 5m. In $T(C_{5m}), v_{5i-4}$ strongly dominates the vertices $v_{5i-3}, e_{5i-4}, e_{5m}$ and $v_{5i-1}; 1 \leq i \leq m$. Similarly e_{5i-2} strongly dominates the vertices $e_{5i-3}, e_{5i-1}, v_{5i-2}$ and $v_{5i-1}; 1 \leq i \leq m$. Hence $\{v_{5i-4}, e_{5i+2}; 1 \leq i \leq m\}$ are also strong efficient dominating sets of $T(C_{5m})$. Therefore $\gamma_{se}[T(C_{5m})] = 2m$ and $\#\gamma_{se}[T(C_{5m})] = 5, m \in N$.

Theorem 2.18. $T(K_{1,n})$ is strong efficient for all $n \ge 1$. Further

$$\gamma_{se}(K_{1,n}) + \gamma_{se}[T(K_{1,n})] = 2 \text{ and} \\ \#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[T(K_{1,n})] = \begin{cases} 5 \text{ if } n = 1, \\ 2 \text{ if } n > 1. \end{cases}$$

Proof. Let v and v_i for $1 \le i \le n$ be the vertices and $e_i = vv_i$ be the edges of the star $K_{1,n}$.

Case (i): Suppose n = 1. $T(K_{1,1})$ is a cycle C_3 for which $\{e_1\}, \{v\}, \{v_1\}$ are the strong efficient dominating set.

Hence $\gamma_{se}[T(K_{1,1})] = 1$ and $\#\gamma_{se}[T(K_{1,1})] = 3$.

Case (ii): Suppose n > 1. In $T(K_{1,n})$, v is adjacent with all v_i^s and e_i^s for $1 \le i \le n$. Hence v is the unique full degree vertex, $deg(v_i) = 2$, $deg(e_i) = 1 + i$ for $1 \le i \le n$. By Result 1.1, $\gamma_{se}[T(K_{1,n})] = 1$ and $\#\gamma_{se}[T(K_{1,n})] = 1$.

Therefore $\gamma_{se}(K_{1,n}) + \gamma_{se}[T(K_{1,n})] = 2$ and

Some Cycle and Star Related Nordhaus-Gaddum Type Relations

$$\#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[T(K_{1,n})] = \begin{cases} 5 \ if \ n = 1, \\ 2 \ if \ n > 1. \end{cases} \square$$

Definition 2.19.([11]) The quasi-total graph P(G) is the graph with vertex set $V(G) \cup E(G)$ where two vertices are adjacent if and only if

- (i) they are non adjacent vertices of G or
- (ii) they are adjacent edges of G or
- (iii) one is a vertex of G and the other is an edge of G incident with it.

Theorem 2.20. $P(C_n)$ is strong efficient if and only if n = 3. Further $\gamma_{se}[P(C_n)] = 2$ and $\#\gamma_{se}[P(C_n)] = 3$.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices and $e_i = v_i v_{i+1}$ for $1 \le i \le n-1, e_n = v_n v_1$ be the edges of the cycle C_n . Let n > 3. Suppose $P(C_n)$ is strong efficient. Let S be a strong efficient dominating set of $P(C_n)$.

Case (i): Let $n = 4.\Delta[P(C_4)] = deg(e_i) = 4, deg(v_i) = 3; 1 \le i \le 4$. Suppose $e_1 \in S$. The vertex e_1 strongly dominates all the vertices other than e_3, v_3 and v_4 . If $e_3 \in S$, then $|N_s[e_2] \cap S| = |\{e_1, e_3\}| = 2 > 1$. This is a contradiction. Therefore $e_3 \notin S$. If $v_3 \in S$, then $|N_s[v_1] \cap S| = |\{e_1, v_3\}| = 2 > 1$. This is a contradiction. Therefore $v_3 \notin S$. If $v_4 \in S$, then $|N_s[v_2] \cap S| = |\{e_1, v_3\}| = 2 > 1$. This is a contradiction. Therefore $v_3 \notin S$. If $v_4 \in S$, then $|N_s[v_2] \cap S| = |\{e_1, v_4\}| = 2 > 1$. This is also a contradiction. Therefore $v_4 \notin S$. Therefore $P(C_4)$ is not strong efficient.

Case (ii): Let n = 5. In $P(C_5)$, $deg(v_i) = deg(e_i) = 4$ for $1 \le i \le 5$. Suppose $e_1 \in S$. The vertex e_1 strongly dominates v_2, e_2, v_1 and e_5 . If either v_3 or e_3 belong to S, then e_2 is dominated by two elements $v_3, e_1 \text{or} e_3, e_1$ of S respectively, a contradiction. Therefore v_3 and e_3 do not belong to S. If $v_4 \in S$, then v_2 is dominated by two elements v_4 and e_1 , a contradiction. Therefore v_4 doesnot belong to S. If either v_5 or e_4 belong to S, then e_5 is dominated by two elements v_5, e_1 or e_4, e_1 of S respectively, a contradiction. Therefore v_5 and e_4 do not belong to S. Hence $P(C_5)$ is not efficient.

Case (iii): Let n > 5. Then $\Delta[P(C_n)] = deg(v_i) = n - 1$, and $deg(e_i) = 4$ for $1 \le i \le 4$. The vertex v_i strongly dominates all the v_j^s other than v_{i-1} and v_{i+1} . Also v_{i-1} and v_{i+1} are adjacent. If $v_{i-1} \in S$, then $|N_s[v_{i-3}] \cap S| = |\{v_i, v_{i-1}\}| = 2 > 1$. This is a contradiction. Therefore $v_{i-1} \notin S$. If $v_{i+1} \in S$, then $|N_s[v_{i+3}] \cap S| = |\{v_i, v_{i+1}\}| = 2 > 1$. This is also a contradiction. Therefore $v_{i+1} \notin S$. Therefore $P(C_n)$ is not strong efficient when n > 3.

Conversely suppose n = 3. Obviously $\{e_1, v_3\}, \{e_2, v_1\}$ and $\{e_1, v_3\}$ are strong efficient dominating sets $P(C_3)$. Therefore $\gamma_{se}[P(C_3)] = 2$ and $\#\gamma_{se}[P(C_3)] = 3$. \Box

Theorem 2.21. $P(K_{1,n})$ is strong efficient if and only if n = 1. Further

$$\gamma_{se}[P(K_{1,1})] = \#\gamma_{se}[P(K_{1,n})] = 1$$

*Proof.*Let $v, v_1, v_2, ..., v_n$ be the vertices and $e_i = vv_i$ for $1 \le i \le n$ be the edges of the star $K_{1,n}$. Suppose n > 1. Let $P(K_{1,n})$ be strong efficient and let S be a strong efficient dominating set of $P(K_{1,n})$.

Karthikeyan Murugan

In $P(K_{1,n})$ the vertex v_i is adjacent with all other v_j^s and e_i for $1 \le i \le n$. Therefore $deg(v_i) = n$. Also e_i is adjacent with all other e_j^s , v_i and v for $1 \le i \le n$. Therefore $deg(e_i) = n + 1$. Similarly v is adjacent with all other e_j^s for $1 \le i \le n$. Therefore deg(v) = n. Suppose $e_i \in S$. Then e_i strongly dominates all other e_j^s , v_i and $v; 1 \le i \le n$. Suppose $v_j \in S, j \ne i$, then $|N_s[v_i] \cap S| = |\{e_i, v_j\}| = 2 > 1$. This is a contradicition. Therefore $v_j \notin S$. Therefore $P(K_{1,n})$ is not strong efficient if n > 1.

Conversely suppose n = 1. Then $P(K_{1,1})$ is P_3 which is obviously strong efficient with the unique strong efficient dominating set $\{e_1\}$. Therefore $\gamma_{se}[P(K_{1,1})] =$ $\#\gamma_{se}[P(K_{1,1})] = 1$. \Box

Definition 2.22.([11]) The quasi vertex-total graph Q(G) is the graph with vertex set $V(G) \cup E(G)$ where two vertices are adjacent if and only if

- (i) they are adjacent vertices of G or
- (ii) they are nonadjacent vertices of G or
- (iii) they are adjacent edges of G or
- (iv) one is a vertex of G and the other is an edge of G incident with it.

Theorem 2.23. $Q(C_n)$ is strong efficient if and only if $n = 3m + 2, m \in N$. Further

$$\gamma_{se}[Q(C_{3m+2})] = m+1 \text{ and } \#\gamma_{se}[Q(C_{3m+2})] = 3m+2.$$

Proof. Let $v_1, v_2, ..., v_n$ be the vertices and $e_i = v_i v_{i+1}$ for $1 \le i \le n-1, e_n = v_n v_1$ be the edges of the cycle C_n . Let $n \ne 3m+2, m \in N$. Suppose $Q(C_n)$ is strong efficient. Let S be a strong efficient dominating set of $Q(C_n)$.

Case (i): Suppose $n = 3m, m \in N$. We have $\Delta[Q(C_{3m})] = deg(v_i) = 3m + 1$ and $deg(e_i) = 4; 1 \leq i \leq 3m$. Suppose $v_1 \in S$. Then v_1 strongly dominates all other v_j^s, e_{3m} and e_1 . The remaining $(3m-2)e_j^s$ which are adjacent with v_j and v_{j+1} form a path of length 3m - 2. Obviously $e_3, e_6, e_9, \cdots, e_{3m-3}$ strongly dominates all the e_j^s except e_{3m-1} If $e_{3m-1} \in S$ then $|N_s[e_{3m}] \cap S| = |\{e_{3m-1}, v_1\}| = 2 > 1$. This is a contradiction. Therefore $e_{3m-1} \notin S$. Therefore $Q(C_n)$ is not strong efficient when n = 3m for $m \in N$.

Case (ii): Suppose n = 3m + 1 for $m \in N$. $\Delta[Q(C_{3m+1})] = deg(v_i) = 3m + 2$ and $deg(e_i) = 4$ for $1 \leq i \leq 3m + 1$. Suppose $v_1 \in S$. Then v_1 strongly dominates all other v_j^s, e_{3m+1} and e_1 . The remaining $(3m - 1)e_j^s$ which are adjacent with v_j and v_{j+1} form a path of length 3m - 1. Obviously $e_3, e_6, e_9, \cdots, e_{3m-3}$ strongly dominates all the e_j^s except e_{3m} and e_{3m-1} . If $e_{3m} \in S$, then $|N_s[e_{3m+1}] \cap S| = |\{e_{3m}, v_1\}| = 2 > 1$. This is a contradiction. Therefore $e_{3m} \notin S$. If $e_{3m-1} \in S$, then $|N_s[e_{3m-2}] \cap S| = |\{e_{3m-1}, e_{3m-3}\}| = 2 > 1$. This is also a contradiction. Therefore $e_{3m-1} \notin S$. Therefore $Q(C_n)$ is not strong efficient if n = 3m or $3m + 1, m \in N$.

Conversely suppose n = 3m + 2 for $m \in N$. Then $\Delta[Q(C_{3m+2})] = deg(v_i) = 3m + 3$ and $deg(e_i) = 4$ for $1 \leq i \leq 3m + 2$. Suppose $v_1 \in Q(C_{3m+2})$

372

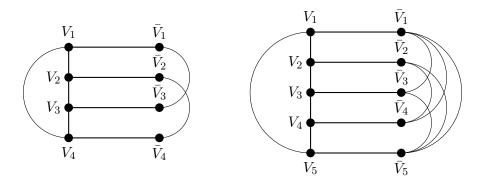


Figure 1: The graphs $C_4\bar{C}_4$ and $C_5\bar{C}_5$

S. We see that v_1 strongly dominates all other v_j^s, e_{3m+2} and e_1 . The remaining 3m vertices e_j^s which are adjacent with v_j and v_{j+1} form a path of length 3m. Obviously $e_3, e_6, e_9, \cdots, e_{3m}$ strongly dominates all the remaining e_j^s . Hence $\{v_1, e_3, e_6, e_9, \cdots, e_{3m}\}$ is a strong efficient dominating set. Similarly $\{v_2, e_4, e_7, e_{10}, \cdots, e_{3m+1}\}, \{v_3, e_5, e_8, e_{10}, \cdots, e_{3m+2}\}\{v_4, e_6, e_9, e_{12}, \cdots, e_{3m}, e_1\}, \{v_5, e_7, e_{10}, e_{13}, \cdots, e_{3m+1}, e_2\} \cdots$ and $\{v_{3m+2}, e_2, e_5, e_8, \cdots, e_{3m-1}\}$ are also strong efficient dominating sets.

Therefore $\gamma_{se}[Q(C_{3m+2})] = m + 1$ and $\#\gamma_{se}[Q(C_{3m+2})] = 3m + 2, m \in N$. \Box

Theorem 2.24. $Q(K_{1,n})$ is strong efficient for all $n \ge 1$. Further

$$\begin{split} \gamma_{se}(K_{1,n}) + \gamma_{se}[Q(K_{1,n})] &= 2 \ and \\ \#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[Q(K_{1,n})] &= \begin{cases} 5 \ if \ n = 1, \\ 2 \ if \ n > 1. \end{cases} \end{split}$$

Proof. Let v and v_i for $1 \leq i \leq n$ be the vertices and $e_i = vv_i$ be the edges of the star $K_{1,n}$. If n = 1, then $Q(K_{1,1})$ is a cycle C_3 . So $\gamma_{se}[Q(K_{1,1})] = 1$ and $\#\gamma_{se}[Q(K_{1,1})] = 3$. So let n > 1. In $Q(K_{1,n})$, v is adjacent with all v_i^s and e_i^s for $1 \leq i \leq n$. Then v is the unique full degree vertex. Therefore by Result 1.1, $\gamma_{se}[Q(K_{1,n})] = 1$ and $\#\gamma_{se}[Q(K_{1,n})] = 1$. Therefore $\gamma_{se}(K_{1,n}) + \gamma_{se}[Q(K_{1,n})] = 2$ and

$$\#\gamma_{se}(K_{1,n}) + \#\gamma_{se}[Q(K_{1,n})] = \begin{cases} 5 \ if \ n = 1, \\ 2 \ if \ n > 1. \end{cases} \square$$

Definition 2.25. ([6]) For a graph G, the complementary prism, donoted by $G\overline{G}$, is formed from a copy of G and a copy of \overline{G} by adding a perfect matching between corresponding vertices.

Theorem 2.26. $C_n \bar{C}_n$ is strong efficient if and only if n = 3. Moreover $\gamma_{se}[C_n \bar{C}_n] = 3$ and $\# \gamma_{se}[C_n \bar{C}_n] = 3$.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices of the cycle C_n and $\bar{v}_1, \bar{v}_2, \cdots, \bar{v}_n$ be the vertices in the copy of \bar{C}_n . Let n > 3.

Case (i): Suppose n = 4 or n = 5. The graph $C_4\bar{C}_4$ and $C_5\bar{C}_5$ are shown in Fig 1. The subgraph induced by the maximum degree vertices is C_4 , which is not strong efficient. Hence $C_4\bar{C}_4$ is not strong efficient. $C_5\bar{C}_5$ is the Peterson graph which is not efficient. Hence $C_5\bar{C}_5$ is not strong efficient.

Case (ii): Suppose $C_n \bar{C}_n$ is strong efficient. Let S be a strong efficient dominating set of $C_n \bar{C}_n$ Suppose first n > 5. Then $\Delta[C_n \bar{C}_n] = \deg(\bar{v}_i) = n - 2$ for $1 \le i \le n$ and $\deg(v_i) = 3$ for $1 \le i \le n$. Moreover \bar{v}_1 and \bar{v}_n are non-adjacent. Suppose $\bar{v}_1 \in S$ and observe that \bar{v}_1 strongly dominates v_1 and all \bar{v}_i other than \bar{v}_2 and \bar{v}_n . Therefore $\bar{v}_2 \in S$. So $|N_s[\bar{v}_4] \cap S| = |\{\bar{v}_1, \bar{v}_2\}| = 2 > 1$. This is a contradiction. Therefore $\bar{v}_2 \notin S$. If $\bar{v}_n \in S$, then the vertices \bar{v}_i for $3 \le i \le n - 2$ are strongly dominated by two vertices \bar{v}_i and \bar{v}_n , a contradiction. This is true if any $\bar{v}_i \in S$. Therefore $C_n \bar{C}_n$ is not strong efficient when n > 3.

Conversely let n = 3. $C_3\bar{C}_3$ is strong efficient with three strong efficient dominating sets $\{v_1, \bar{v}_2, \bar{v}_3\}, \{v_2, \bar{v}_1, \bar{v}_3\}$ and $\{v_3, \bar{v}_2, \bar{v}_1\}$. Therefore $\gamma_{se}[C_n\bar{C}_n] = 3$ and $\#\gamma_{se}[C_n\bar{C}_n] = 3$.

Theorem 2.27. $K_{1,n}$, $\overline{K}_{1,n}$ is strong efficient if and only if n = 1. Moreover

 $\gamma_{se}[K_{1,n}\bar{K}_{1,n}] = 2 \text{ and } \#\gamma_{se}[K_{1,n}\bar{K}_{1,n}] = 2.$

Proof. Let $v, v_i; 1 \leq i \leq n$ be the vertices of $K_{1,n}$ and $\bar{v}, \bar{v}_i; 1 \leq i \leq n$ be the vertices of the copy of $\bar{K}_{1,n}$ of $\bar{K}_{1,n}$. In $K_{1,n}\bar{K}_{1,n}$, v is adjacet with all v_i^s and $\bar{v}; 1 \leq i \leq n$. $\Delta[K_{1,n}\bar{K}_{1,n}] = deg(v) = n + 1, deg(v_i) = 2, deg(\bar{v}_i) = n$ and $deg(\bar{v}) = 1; 1 \leq i \leq n$. Let n > 1. Suppose $K_{1,n}, \bar{K}_{1,n}$ is strong efficient. Any strong efficient dominating set must contain v. Let S be a strong efficient dominating set. v strongly dominates \bar{v} and $v_i; 1 \leq i \leq n$. If $\bar{v}_i \in S$, then $|N_s[\bar{v}_i] \cap S| = |\{v, \bar{v}_i\}| = 2 > 1$. This is a contradiction. Therefore $\bar{v}_i \notin S$. Therefore $K_{1,n}\bar{K}_{1,n}$ is not strong efficient when n > 1.

Conversely let n = 1. $K_{1,1}\bar{K}_{1,1}$ is the path P_4 which is obviously strong efficient with strong efficient dominating set $\{v, \bar{v}_1\}$ and $\{\bar{v}, v_1\}$. Therefore $\gamma_{se}[K_{1,n}\bar{K}_{1,n}] = 2$ and $\#\gamma_{se}[K_{1,n}\bar{K}_{1,n}] = 2$.

Acknowledgement The author is thankful to the referees for their many valuable suggestions and comments to improve the paper.

References

- D. W. Bange, A. E. Barkauskas and P. J. Slater, *Efficient dominating sets in graphs*, Application of Discrete Mathematics, SIAM, Philadephia, (1988), 189–199.
- [2] G. Chartrand, H. Hevia, E. B. Jarette and M. Schultz, Subgraph distances in graphs defined by edge transfers, Discrete Math., 170(1997), 63–79.
- [3] F. Harary, Graph theory, Addison-Wesley, 1969.
- [4] F. Harary, T. W. Haynes and P. J. Slater, *Efficient and excess domination in graphs*, J. Combin. Math. Combin. Comput., 26(1998), 83–95.
- [5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc, New York, 1998.
- [6] T. W. Haynes, M. A. Henning, P. J. Slater and L. C. Van Der Merwe, *The comple*mentary product of two graphs, Bull. Inst. Combin. Appl., 51(2007), 21–30.
- [7] N. Meena, Studies in graph theory-efficient domination and related topics, Ph. D. Thesis, Manonmaniam Sundaranar University, 2013.
- [8] K. Murugan and N. Meena, Some Nordhaus-Gaddum type relation on strong efficient dominating sets, J. New Results Sci., 5(11)(2016), 4–16.
- [9] E. Sampathkumar and S. B. Chikkodimath, Semi-total graphs of a graph I, J. Karnatak Univ. Sci., 18(1973), 274–280.
- [10] E. Sampathkumar and L. P. Latha, Strong weak domination and domination balance in a graph, Discrete Math., 161(1996), 235–242.
- [11] D. V. S. S. Sastry and B.S. P. Raju, Graph equations for line graphs, total graphs, middle graphs and quasitotal graphs, Discrete Math., 48(1984), 113–119.
- H. Whitney, Congruent graphs and the connectivity graphs, Amer. J. Math., 54(1932), 150–168.