Acknowledgement
Supported by : University of Kashan
References
- Alashti, R.A. and Khorsand, M. (2012), "Three-dimensional dynamo-thermo-elastic of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled", Int. J. Press. Vessels Pip., 96, 49-67. https://doi.org/10.1016/j.ijpvp.2012.06.006
- Arani, A.G., Mohammadimehr, M., Saidi, A.R., Shogaei, S. and Arefmanesh, A. (2011), "Thermal buckling analysis of doublewalled carbon nanotubes considering the small-scale length effect", Proc. IMechE, PartC, Journal of Mechanical Engineering Science, 225, 248-256. https://doi.org/10.1177/09544062JMES1975
- Arani, A.G., Mobarakeh, M.R., Shams, S. and Mohammadimehr, M. (2012), "The effect of CNT volume fraction on the magnetothermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5
- Arani, A.G., Haghparast, E., Maraghi, Z.K. and Amir, S. (2015), "Static stress analysis of carbon nano-tube reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electro-magnetic fields", Compos. Part B, 68, 136-145. https://doi.org/10.1016/j.compositesb.2014.08.036
- Arani, A.G., Arani, H.K. and Maraghi, Z.K. (2016), "Vibration analysis of sandwich composite micro-plate under electromagneto-mechanical loadings", Appl. Math. Model., 40, 10596-10615. https://doi.org/10.1016/j.apm.2016.07.033
- Bahadori, R. and Najafizadeh, M.M. (2015), "Free vibration of two-dimensional functionally graded axisymmetric cylindrical shell on Winkler-Pasternak elastic foundation by first-order shear deformation theory and using Navier differential quadrature solution methods", Appl. Math. Model., 39, 4877-4894. https://doi.org/10.1016/j.apm.2015.04.012
- Barati, M.R. and Zenkour, A. (2017), "A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate", Compos. Struct., 168, 885-892. https://doi.org/10.1016/j.compstruct.2017.02.090
- Barati, M.R. and Zenkour, A.M. (2018), "Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions", J. Vib. Control, 24(10), 1910-1926. https://doi.org/10.1177/1077546316672788
- Barati, M.R., Sadr, M.H. and Zenkour, A.M. (2016), "Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation", Int. J. Mech. Sci., 117, 309-320. https://doi.org/10.1016/j.ijmecsci.2016.09.012
- Barati, M.R., Shahverdi, H. and Zenkour, A.M. (2017), "Electromechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory", Mech. Adv. Mater. Struct., 24(12), 987-998. https://doi.org/10.1080/15376494.2016.1196799
- Beni, Y.T., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformation functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065
- Dey, T. and Ramachandra, L.S. (2016), "Non-linear vibration analysis of laminated composite circular cylindrical shells", Compos. Struct., 163, 89-100. https://doi.org/10.1016/j.compstruct.2016.12.018
- Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded carbon nanotubes reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243
- Duc, N.D. (2014), "Nonlinear static and dynamic stability of functionally graded plates and shells", Vietnam National University Press, Hanoi, Vietnam.
- Duc, N.D., Cong, P.H., Anh, V.M., Quang, V.D., Tran, P., Tuan, N.D. and Thinh, N.H. (2015a), "Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment", Compos. Struct., 132, 597-609. https://doi.org/10.1016/j.compstruct.2015.05.072
- Duc, N.D., Tuan, N.D., Tran, P., Dao, N.T. and Dat, N.T. (2015b), "Nonlinear dynamic analysis of Sigmoid functionally graded circular cylindrical shells on elastic foundations using the third order shear deformation theory in thermal environments", Int. J. Mech. Sci., 101-102, 338-348. https://doi.org/10.1016/j.ijmecsci.2015.08.018
- Duc, N.D., Bich, D.H. and Cong, P.H. (2016), "Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations", J. Thermal Stress., 39(3), 278-297. https://doi.org/10.1080/01495739.2015.1125194
- Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", J. Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032
- Farajpour, A., Yazdi, M.H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibrationof magneto-electro-elastic nanoplate", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039
- Frostig, Y., Birman, V. and Kardomateas, G.A. (2018), "Non-linear wrinkling of a sandwich panel with functionally graded core -Extended high-order approach", Int. J. Solids Struct., 148-149, 122-139. https://doi.org/10.1016/j.ijsolstr.2018.02.023
- Ghorbanpour Arani, A., Amir, S., Shajari, A.R., Mozdianfard, M.R., Khoddami Maraghi, Z. and Mohammadimehr, M. (2012a), "Electro-thermal non-local vibration analysis of embedded DWBNNTs", Proc. IMechE, PartC: Journal of Mechanical Engineering Science, 226, 1410-1422. https://doi.org/10.1177/0954406211422619
- Ghorbanpour Arani, A., Rabbani, H., Amir, S., Khoddami Maraghi, Z., Mohammadimehr, M. and Haghparast, E. (2012b), "Analysis of nonlinear vibrations for multi-walled carbon nanotubes embedded in an elastic medium", J. Solid Mech., 3(3), 258-270.
- Jabbari, M., Joubaneh, E.F., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression", Int. J. Mech. Sci., 70, 50-56. https://doi.org/10.1016/j.ijmecsci.2013.01.031
- Ke, L.L., Liu, C. and Wang, Y.S. (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Physica E, 66, 93-106. https://doi.org/10.1016/j.physe.2014.10.002
- Kheibari, F. and Beni, Y.T. (2016), "Size dependent electromechanical vibration of single-walled piezoelectricnanotubes using thin shell model", Mater. Des., 114, 572-583. https://doi.org/10.1016/j.matdes.2016.10.041
- Khoa, N.D., Thiem, H.T. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 26(3), 248-259. https://doi.org/10.1080/15376494.2017.1341583
- Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method", Compos. Part B, 77, 291-303. https://doi.org/10.1016/j.compositesb.2015.03.045
- Liu, S., Yu, T. and Bui, T.Q. (2017a) "Size effects of functionally graded moderately thick microplates: A novel non-classical simple-FSDT isogeometricanalysis", Eur. J. Mech. - A/Solids, 66, 446-458. https://doi.org/10.1016/j.euromechsol.2017.08.008
- Liu, S., Yu, T., Bui, T.Q. and Xia, S. (2017b), "Size-dependent analysis of homogeneous and functionally graded microplates using IGA and a non-classical Kirchhoff plate theory", Compos. Struct., 172, 34-44. https://doi.org/10.1016/j.compstruct.2017.03.067
- Liu, S., Yu, T., Van Lich, L., Yin, S. and Bui, T.Q. (2018), "Size effect on cracked functional composite micro-plates by an XIGA-based effective approach", Meccanica, 53(10), 2637-2658. https://doi.org/10.1007/s11012-018-0848-9
- Liu, S., Yu, T., Van Lich, L., Yin, S. and Bui, T.Q. (2019), "Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis", Comput. Struct., 212, 173-187. https://doi.org/10.1016/j.compstruc.2018.10.009
- Loy, C.T., Lam, K.Y. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4, 193-198. https://doi.org/10.3233/SAV-1997-4305
- Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stress., 40, 899-916. https://doi.org/10.1080/01495739.2017.1318689
- Minh, P.P. and Duc, N.D. (2019), "The effect of cracks on the stability of the functionally graded plates with variable-thickness using HSDT and phase-field theory", Compos. Part B, 175, 107086. https://doi.org/10.1016/j.compositesb.2019.107086
- Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analysis of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math Model, 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054
- Mohammadimehr, M. and Rahmati, A.H. (2013), "Small scale effect on electro-thermo-mechanical vibration analysis of singlewalled boron nitride nanorods under electric excitation", Turkish J. Eng. Environ. Sci., 37, 1-15.
- Mohammadimehr, M. and Shahedi, S. (2016), "Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM", Steel Compos. Struct., Int. J., 21(1), 1-36. https://doi.org/10.12989/scs.2016.21.1.001
- Mohammadimehr, M., Saidi, A.R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2011), "Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory", Proc. IMechE, Part C: Journal of Mechanical Engineering Science, 225(2), 498-506. https://doi.org/10.1177/2041298310392861
- Mohammadimehr, M., Navi, B.R. and Arani, A.G. (2016a), "Modified strain gradient Reddy rectangular plate model for biaxialbuckling and bending analysis of double-coupled piezoelectricpolymeric nanocomposite reinforced by FGSWNT", Compos. Part B, 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
- Mohammadimehr, M., Salemi, M. and Navi, B.R. (2016b), "Bending buckling and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temprature-dependent material properties under hydro-thermomechanical loadings using DQM", Compos. Struct., 138, 361-380.https://doi.org/10.1016/j.compstruct.2015.11.055
- Mohammadimehr, M., Nejad, E.S. and Mehrabi, M. (2018a), "Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores", Struct. Eng. Mech., Int. J., 65(4), 491-504. https://doi.org/10.12989/sem.2018.65.4.491
- Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018b), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422 https://doi.org/10.12989/scs.2018.29.3.405
- Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018c), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., Int. J., 26(4), 513-531. https://doi.org/10.12989/scs.2018.26.4.513
- Murmu, T., McCarthy, M.A. and Adhikari, S. (2012), "Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach", J. Sound Vib., 331, 5069-5086. https://doi.org/10.1016/j.jsv.2012.06.005
- Nguyen, D.D. (2016), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric Sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 1-28. https://doi.org/10.1177/1099636216653266
- Nguyen, D.K., Vu, M.A. and Nguyen, D.D. (2019b), "Nonlinear dynamic response and vibration of functionally graded nanocomposite cylindrical panel reinforced by carbon nanotubes in thermal environment", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636219847191
- Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B: Eng., 99, 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028
- Razavi, H., Babadi, A.F. and Beni, Y.T. (2016), "Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory", Compos. Struct., 160, 1299-1309. https://doi.org/10.1016/j.compstruct.2016.10.056
- Shen, H.S., Xiang, Y., Fan, Y. and Hui, D. (2018), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments", Compos. Part B, 136, 177-186. https://doi.org/10.1016/j.compositesb.2017.10.032
- Sobhy, M. and Zenkour, A.M. (2018), "Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate", Compos. Part B: Eng., 154, 492-506. https://doi.org/10.1016/j.compositesb.2018.09.011
- Song, Z.G., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments", Int. J. Mech. Sci., 115, 339-347. https://doi.org/10.1016/j.ijmecsci.2016.06.020
- Van Do, T., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022
- Vuong, P.M. and Duc, N.D. (2018), "Nonlinear response and buckling analysis of eccentrically stiffened FGM toroidal shell segments in thermal environment", J. Aerosp. Sci. Technol., 79, 383-398. https://doi.org/10.1016/j.ast.2018.05.058
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aero. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003
- Yang, J., Xiong, J., Ma, L., Zhang, G., Wang, X. and Wu, L. (2014), "Study on vibration damping of composite sandwich cylindrical shell with pyramidal truss-like cores", Compos. Struct., 117, 362-372. https://doi.org/10.1016/j.compstruct.2014.06.042
- Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019a), "A novel sizedependent quasi-3D isogeometric beam model for twodirectional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014
- Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019b), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin-Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006
- Yuan, Z. and Kardomateas, G.A. (2018), "Nonlinear dynamic response of sandwich wide panels", Int. J. Solids Struct., 148-149, 110-121. https://doi.org/10.1016/j.ijsolstr.2017.09.028
- Zeighampour, H. and Beni, Y.T. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004
- Zenkour, A.M. (2015), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solids Struct., 42, 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016
- Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147