DOI QR코드

DOI QR Code

팽창 흑연을 포함한 폴리우레탄 폼의 난연 및 물성 변화 연구

Flame Retardancy and Physical Properties of Polyurethane Foam with Expandable Graphite

  • Bae, Sung-Jun (Korea Institute of Footwear & Leather Technology) ;
  • Park, Ji-Hyeon (Korea Institute of Footwear & Leather Technology) ;
  • Go, Jae-Wang (Korea Institute of Footwear & Leather Technology) ;
  • Choi, Pil-Jun (Korea Institute of Footwear & Leather Technology) ;
  • Lee, Jae-Yeon (Korea Institute of Footwear & Leather Technology) ;
  • Sur, Suk-Hun (Korea Institute of Footwear & Leather Technology)
  • 투고 : 2019.09.05
  • 심사 : 2019.09.16
  • 발행 : 2019.09.30

초록

본 연구에서는 팽창 흑연의 함량 변화를 달리하여 제조한 팽창 흑연/폴리우레탄 폼 복합체의 난연성 및 물리적 특성을 고찰하였다. 제조된 팽창 흑연/폴리우레탄 폼 복합체는 팽창 흑연의 함량이 증가할수록 인장강도는 감소하였고, SEM 의한 셀 형성을 분석한 결과 팽창 흑연 함량이 증가할수록 셀이 불균일하고 붕괴되는 현상이 발생함을 확인할 수 있었다. 압축강도와 밀도, 공기 투과도 시험결과 팽창 흑연의 함량이 증가할수록 밀도가 증가하면서, 압축강도 값이 높아졌으며, 공기 투과도는 낮게 나타났다. 난연성은 합성된 폼의 탄화길이를 분석하였으며 팽창 흑연의 함량이 10 phr 이상 첨가될수록 우수한 난연 성능을 발현함을 알 수 있었다. X-ray diffraction (XRD)에 의한 회절도 분석결과 팽창 흑연의 함량이 증할수록 $2{\theta}=26^{\circ}$부근에서 흑연의 결정피크가 나타남을 확인할 수 있었다.

In this study, the flame retardant and physical properties of the expandable graphite/polyurethane foam composites were considered by the addition of expandable graphite. The tensile strength of expandable graphite/polyurethane foam composites decreased with the content of the expandable graphite and the analysis of cell shape by SEM has shown that as the expandable graphite content increases, the cell becomes uneven and collapses. As the results of the compressive strength, density and air permeability tests, it was found that density and as the content of the expandable graphite increased, the compressive strength of the composites increased but air permeability decreased. When the amount of expandable graphite was added at 10 phr or higher, the foam has excellent flame retardation performance. Analysis of the degree of diffraction by X-ray diffraction (XRD) showed that as the content of the expandable graphite increased, the crystal peak of the graphite appeared near $2{\theta}=26^{\circ}$.

키워드

참고문헌

  1. Woods, G., The ICI Polyurethane Book, New Jersey: ICI Polyurethanes, (1987).
  2. Oertel, G., Polyurethane Handbook, Munich: Car; Hanser Verlag, (1985).
  3. J.Q. Wang and W.K. Chow, J. Appl. Polym. Sci., 97, (2005).
  4. S.V. Levchik and E.D. Weil, Polym. Int., 53, (2004).
  5. G. Camino, L. Costa and M.P. Luda, Makromol. Chem., Macromol. Symp., 74, (1993).
  6. Mikhail I. Katsnelson, graphite, Chicago: Encyclopaedia Britannica, Inc., (2007).
  7. M.S. Dresselhaus and G. Dresselhaus, Adv. Phys., 30, (1981).
  8. J. Li, L. Feng and Z. Jia, Mater. Lett., 60, (2006).
  9. M. Thirumal, D. Khastgir, N.K. Singha, B.S. Manjunath and Y.P. Naik, J. Appl. Polym. Sci., 110, (2008).
  10. L. Shi, B.H. Xie, J.H. Wang, C.R. Tian and M.Y. Yang, Polym. Int., 55, (2006).
  11. F. Kang, Y. Leng and T.Y. Zhang, Carbon, 35, (1997).
  12. M. Modesti and A. Lorenzetti, Eur. Polym. J., 39, (2003).
  13. A.S. Dorcheh and M. H. Abbasi, Journal of Materials Processing Technology, 199, (2008).
  14. Zhang T, Xi K, Yu X, Gu M, Guo S, Polymer, 44, (2003).
  15. S. M. Kim and L. T. Drzal, Energy Mater. Sol. Cells., 93, (2009).