복어독의 종양 관련 기존연구 논문에 대한 분석

Analysis for cancer-related studies using Puffer fish poison

  • 조용래 (대전대학교 동서생명과학연구원) ;
  • 이성배 (대전대학교 동서생명과학연구원) ;
  • 박세영 (대전대학교 한의학과) ;
  • 손창규 (대전대학교 동서생명과학연구원)
  • Cho, Yong Rae (Institute Traditional Medicine and Bioscience, Daejeon University) ;
  • Lee, Sung Bae (Institute Traditional Medicine and Bioscience, Daejeon University) ;
  • Park, Samuel Young (College of Korean medicine, Daejeon University) ;
  • Son, Chang Gue (Institute Traditional Medicine and Bioscience, Daejeon University)
  • 투고 : 2018.09.02
  • 심사 : 2019.04.12
  • 발행 : 2019.09.21

초록

Objective: The aim of this study is to analyze the previously published research articles related to puffer fish toxin focusing on tumor. Method: Literatures were searched in PubMed database, published since 2000, using the keyword; Puffer fish, Fugu and tetrodotoxin (TTX) with cancer or tumor. Research papers were classified by year, country, study model, used material, kind of tumor and study subject. Finally, a total of 41 studies were analyzed in this study. Results: From 2000 to 2018, the most abundant papers were published in 2009 (6 studies) and almost half of the papers were studied in United Kingdom (20 studies). The 39 studies used TTX purified from puffer fish while 2 studies used crude extract of skin and gonad of puffer fish. The most used target cell line was prostate cancer (15 studies), and the next was breast cancer (14 studies). The study methods were classified into 4 clinical studies, 2 animal studies and 35 cell-based studies. Conclusions: Our results show that the overview of cancer-related studies using puffer fish poison. This information would be helpful for the puffer fish-derived drug researches in the future.

키워드

참고문헌

  1. Shin HR, Park IS. Status of cancer statistics in Korea and national cancer screening project. Journal of the Korean Society for Breast Screening. 2006 ; 3 : 5760.
  2. Anand, P. et al. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm. Res. 2008 ; 25 : 2097116.
  3. Cleeland, C. S. Cancer-related symptoms. Semin. Radiat. Oncol. 2000 ; 10 ; 17590. https://doi.org/10.1053/srao.2000.6590
  4. Melero, I. et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 2014 ; 11 ; 50924.
  5. Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer research. Science 2000 ; 287 : 196973. https://doi.org/10.1126/science.287.5460.1969
  6. Sawyers, C. Targeted cancer therapy. 2004 ; Nature 432 : 2947. https://doi.org/10.1038/nature03095
  7. Bernstein, B. J. & Grasso, T. Prevalence of complementary and alternative medicine use in cancer patients. Oncol. Williston Park N. 15 2001 ; 12671272; discussion 1272-1278 ; 1283
  8. Yates, J. S. et al. Prevalence of complementary and alternative medicine use in cancer patients during treatment. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2005 ; 13 : 80611
  9. Demain, A. L. & Vaishnav, P. Natural products for cancer chemotherapy. Microb. Biotechnol. 2011; 4, 68799
  10. Kim, M. J. et al. Use of Complementary and Alternative Medicine among Korean Cancer Patients. Korean J. Intern. Med. 2004 ; 19 : 2506
  11. Jacobs, D. R., Slavin, J. & Marquart, L. Whole grain intake and cancer: a review of the literature. Nutr. Cancer. 1995 ; 24 : 2219
  12. Hendler, R. & Zhang, Y. Probiotics in the Treatment of Colorectal Cancer. Medicines . 2018 ; 5
  13. Sofias, A. M., Dunne, M., Storm, G. & Allen, C. The battle of nano paclitaxel. Adv. Drug Deliv. Rev. 2017 ; 122 : 2030
  14. Oroli, N. 2. Cancer Metastasis Rev. 2012 ; 31 : 17394
  15. Li, L., Huang, J. & Lin, Y. Snake Venoms in Cancer Therapy: Past, Present and Future. Toxins. 2018 ; 10,
  16. Shi, Z. et al. A systematic review and meta-analysis of traditional insect Chinese medicines combined chemotherapy for non-surgical hepatocellular carcinoma therapy. Sci. Rep. 2017 : 7
  17. Seo, B.-K., Han, K., Kwon, O., Jo, D.-J. & Lee, J.-H. Efficacy of Bee Venom Acupuncture for Chronic Low Back Pain: A Randomized, Double-Blinded, Sham-Controlled Trial. Toxins. 2017 : 9.
  18. Chaisakul, J., Hodgson, W. C., Kuruppu, S. & Prasongsook, N. Effects of Animal Venoms and Toxins on Hallmarks of Cancer. J. Cancer 2016; 7 : 157178
  19. Lee, K.-H., Cho, Y.-Y., Kim, S. & Sun, S.-H. History of Research on Pharmacopuncture in Korea. J. Pharmacopuncture 2016;19: 1018
  20. Kao, C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol. 1966 ; Rev. 18 ; 9971049
  21. Lago, J., Rodrguez, L., Blanco, L., Vieites, J. & Cabado, A. Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses. Mar. Drugs 2015 ; 13 : 6384406
  22. Pancrazio, J. J., Viglione, M. P., Tabbara, I. A. & Kim, Y. I. Voltage-dependent ion channels in small-cell lung cancer cells. Cancer Res. 1989 ; 49 : 59016
  23. Blandino, J. K., Viglione, M. P., Bradley, W. A., Oie, H. K. & Kim, Y. I. Voltage-dependent sodium channels in human small-cell lung cancer cells: role in action potentials and inhibition by Lambert-Eaton syndrome IgG. J. Membr. Biol. 1995 ; 143 : 15363
  24. Grimes, J. A. et al. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett. 1995 ; 369 : 2904
  25. Gallagher, J. D., Fay, M. J., North, W. G. & McCann, F. V. Ionic signals in T47D human breast cancer cells. Cell. Signal. 1996 ; 8 : 27984
  26. Veeruraj, A., Pugazhvendan, S. R., Ajithkumar, T. T. & Arumugam, M. Isolation and Identification of Cytotoxic and Biological Active Toxin from the Puffer Fish Arothron stellatus. Toxicol. Res. 2016 ; 32 ; 21523.
  27. Roger, S., Besson, P. & Le Guennec, J.-Y. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim. Biophys. Acta 2003 ; 1616 ; 10711
  28. Laniado, M. E. et al. Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am. J. Pathol. 1997 ; 150 : 121321
  29. Geiger, T. R. & Peeper, D. S. Metastasis mechanisms. Biochim. Biophys. Acta 2009 ; 1796 : 293308
  30. Black, J. A. & Waxman, S. G. Noncanonical roles of voltage-gated sodium channels. 2013 ; Neuron 80 : 28091
  31. Hagen, N. A. et al. An Open-Label, Multi-Dose Efficacy and Safety Study of Intramuscular Tetrodotoxin in Patients with Severe Cancer-Related Pain. J. Pain Symptom Manage. 2007 ; 34 : 171182
  32. Hagen, N. A. et al. Tetrodotoxin for Moderate to Severe Cancer Pain: A Randomized, Double Blind, Parallel Design Multicenter Study. J. Pain Symptom Manage. 2008 ; 35 : 420429
  33. Hagen, N. A. et al. A multicentre open-label safety and efficacy study of tetrodotoxin for cancer pain. Curr. Oncol. 2011 : 18 https://doi.org/10.3747/co.21.1698
  34. Hagen, N. A. et al. Tetrodotoxin for Moderate to Severe Cancer-Related Pain: A Multicentre, Randomized, Double-Blind, Placebo-Controlled, Parallel-Design Trial. Pain Res. Manag. 2017 ; 2017 : 17
  35. Costantini, M. et al. Prevalence, distress, management, and relief of pain during the last 3 months of cancer patients' life. Results of an Italian mortality follow-back survey. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2009 ; 20 : 72935
  36. Benyamin, R. et al. Opioid complications and side effects. Pain Physician 2008 ; 11 : 105-20
  37. Laird, B., Colvin, L. & Fallon, M. Management of cancer pain: basic principles and neuropathic cancer pain. Eur. J. Cancer Oxf. Engl. 2008 ; 44 : 107882
  38. Nieto, F. R. et al. Tetrodotoxin (TTX) as a Therapeutic Agent for Pain. Mar. Drugs 2012 ; 10 : 281305
  39. Campbell, T. M., Main, M. J. & Fitzgerald, E. M. Functional expression of the voltage-gated Na+-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells. J. Cell Sci. 2013 ; 126 : 493949
  40. Guzel RM, Ogmen K, Ilieva KM, Fraser SP, Djamgoz MBA. Colorectal cancer invasiveness in vitro: Predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. J Cell Physiol. 2018 ; 234(5) : 6582-93 https://doi.org/10.1002/jcp.27399
  41. Gumushan-Aktas H, Altun S. Effects of Hedera helix L. extracts on rat prostate cancer cell proliferation and motility. Oncol Lett. 2016 ; 12 : 2985-91 https://doi.org/10.3892/ol.2016.4941
  42. Rizaner, N. et al. Intracellular calcium oscillations in strongly metastatic human breast and prostate cancer cells: control by voltage-gated sodium channel activity. Eur. Biophys. J. EBJ 2016 ; 45 : 73548
  43. Mohammed, F. H., Khajah, M. A., Yang, M., Brackenbury, W. J. & Luqmani, Y. A. Blockade of voltage-gated sodium channels inhibits invasion of endocrine-resistant breast cancer cells. Int. J. Oncol. 2016 ; 48 : 7383
  44. El-Dayem, S. M. A. & Fouda, F. M. The antitumor effects of tetrodotoxin and/or doxorubicin on Ehrlich ascites carcinoma-bearing female mice. Toxicol. Ind. 2013 ; Health 29 : 40417
  45. Hernandez-Plata, E. et al. Overexpression of NaV 1.6 channels is associated with the invasion capacity of human cervical cancer. Int. J. Cancer. 2012 ; 130 : 201323
  46. Yildirim S, Altun S, Gumushan H, Patel A, Djamgoz MB. Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo. CancerLett. 2012 ; 323 : 58-61
  47. Fraser, S. P. et al. Estrogen and non-genomic upregulation of voltage-gated Na(+) channel activity in MDA-MB-231 human breast cancer cells: role in adhesion. J. Cell. Physiol. 2010 ; 224 : 52739
  48. Chioni, A.-M., Shao, D., Grose, R. & Djamgoz, M. B. A. Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: activity-dependent positive feedback and cellular migration. Int. J. Biochem. Cell Biol. 2010 ; 42 : 34658
  49. Gao, R., Shen, Y., Cai, J., Lei, M. & Wang, Z. Expression of voltage-gated sodium channel alpha subunit in human ovarian cancer. Oncol. Rep. 2010 ; 23 : 129399
  50. House, C. D. et al. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res. 2010 ; 70 : 695767
  51. Krasowska, M., Grzywna, Z. J., Mycielska, M. E. & Djamgoz, M. B. A. Fractal analysis and ionic dependence of endocytotic membrane activity of human breast cancer cells. Eur. Biophys. J. EBJ 2009 ; 38 : 111525
  52. Gao, R., Wang, J., Shen, Y., Lei, M. & Wang, Z. Functional expression of voltage-gated sodium channels Nav1.5 in human breast cancer cell line MDA-MB-231. J. Huazhong Univ. Sci. Technol. Med. Sci. Hua Zhong Ke Ji Xue Xue Bao Yi Xue Ying Wen Ban Huazhong Keji Daxue Xuebao Yixue Yingdewen Ban 2009 ; 29 : 647
  53. Gillet, L. et al. Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells. J. Biol. Chem. 2009 ; 284 : 868091
  54. Nakajima, T. et al. Eicosapentaenoic acid inhibits voltage-gated sodium channels and invasiveness in prostate cancer cells. Br. J. Pharmacol. 2009 ; 156 : 42031
  55. Tran, T.-A. et al. Non-anti-mitotic concentrations of taxol reduce breast cancer cell invasiveness. Biochem. Biophys. Res. Commun. 2009 ; 379 : 3048
  56. Chioni, A.-M., Brackenbury, W. J., Calhoun, J. D., Isom, L. L. & Djamgoz, M. B. A. A novel adhesion molecule in human breast cancer cells: voltage-gated Na+ channel beta1 subunit. Int. J. Biochem. Cell Biol. 2009 ; 41 : 121627
  57. Palmer, C. P. et al. Single cell adhesion measuring apparatus (SCAMA): application to cancer cell lines of different metastatic potential and voltage-gated Na+ channel expression. Eur. Biophys. J. EBJ 2008 ; 37 ; 35968
  58. Pan, H. & Djamgoz, M. B. A. Biochemical constitution of extracellular medium is critical for control of human breast cancer MDA-MB-231 cell motility. J. Membr. Biol. 2008 ; 223 : 2736
  59. Ding, Y. et al. Epidermal growth factor upregulates motility of Mat-LyLu rat prostate cancer cells partially via voltage-gated Na+ channel activity. J. Cell. Physiol. 2008 ; 215 : 7781
  60. Uysal-Onganer, P. & Djamgoz, M. B. Epidermal growth factor potentiates in vitro metastatic behaviour of human prostate cancer PC-3M cells: involvement of voltage-gated sodium channel. Mol. 2007 ; Cancer 6 : 76 https://doi.org/10.1186/1476-4598-6-76
  61. Roger, S. et al. Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int. J. Biochem. Cell Biol. 2007 ; 39 ; 77486
  62. Scorey, N. et al. Notch signalling and voltage-gated Na+ channel activity in human prostate cancer cells: independent modulation of in vitro motility. Prostate Cancer Prostatic Dis. 2006 ; 9 : 399406
  63. Brackenbury, W. J. & Djamgoz, M. B. A. Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J. Physiol. 2006 ; 573 : 34356
  64. Fulgenzi, G. et al. Human neoplastic mesothelial cells express voltage-gated sodium channels involved in cell motility. Int. J. Biochem. Cell Biol. 2006 ; 38 : 114659
  65. Mycielska, M. E., Palmer, C. P., Brackenbury, W. J. & Djamgoz, M. B. A. Expression of Na+-dependent citrate transport in a strongly metastatic human prostate cancer PC-3M cell line: regulation by voltage-gated Na+ channel activity. J. Physiol. 2005 ; 563 : 393408
  66. Onganer, P. U. & Djamgoz, M. B. A. Small-cell lung cancer (human): potentiation of endocytic membrane activity by voltage-gated Na(+) channel expression in vitro. J. Membr. Biol. 2005 ; 204 : 6775
  67. Fraser, S. P. et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2005 ; 11 : 53819
  68. Roger, S., Le Guennec, J.-Y. & Besson, P. Particular sensitivity to calcium channel blockers of the fast inward voltage-dependent sodium current involved in the invasive properties of a metastastic breast cancer cell line. Br. J. Pharmacol. 2004 ; 141 : 6105
  69. Bennett, E. S., Smith, B. A. & Harper, J. M. Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Pflugers Arch. 2004 ; 447 : 90814
  70. Fraser, S. P. et al. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J. Cell. Physiol. 2003 ; 195 : 47987
  71. Mycielska, M. E., Fraser, S. P., Szatkowski, M. & Djamgoz, M. B. A. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J. Cell. Physiol. 2003 ; 195 : 4619
  72. Djamgoz MBA, Mycielska, M., Madeja, Z., Fraser, S. P. & Korohoda, W. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltagegated Na+ channel activity. J. Cell Sci. 2001 ; 114 : 2697705
  73. Fraser, S. P., Grimes, J. A. & Djamgoz, M. B. Effects of voltage-gated ion channel modulators on rat prostatic cancer cell proliferation: comparison of strongly and weakly metastatic cell lines. The Prostate. 2000 ; 44 : 6176