DOI QR코드

DOI QR Code

비행 환경에 따른 극초음속 비행체의 구조 건전성에 관한 연구

A Study on the Structural Integrity of Hypersonic Vehicles According to Flight Conditions

  • Kang, Yeon Cheol (Department of Aerospace Engineering, Inha University) ;
  • Kim, Gyubin (Department of Aerospace Engineering, Inha University) ;
  • Kim, Jeong Ho (Department of Aerospace Engineering, Inha University) ;
  • Cho, Jin Yeon (Department of Aerospace Engineering, Inha University) ;
  • Kim, Heon Ju (Agency for Defense Development)
  • 투고 : 2019.07.23
  • 심사 : 2019.09.24
  • 발행 : 2019.10.01

초록

극초음속 비행체의 경우 고속으로 이동하는 유체와 구조물 표면사이의 마찰에 의해 공력 가열현상이 발생하며, 이로 인해 구조물의 강성이 저하되고 열 변형이 발생하게 된다. 이러한 물리적인 현상들은 비행체의 열공탄성학적인 불안정성을 초래할 수 있으며, 이와 더불어 구조물의 열적 안전성 감소시킬 수 있다. 이에 본 연구에서는 비행고도/비행시간/마하수를 변화시켜가며 공력열탄성학적 연계해석을 수행하고, 해석된 결과를 이용하여 구조물의 열적 안전성과 동적 안정성에 대해 고찰을 하였다. 구조물의 동적 안전성을 판별하기 위해 계산된 변위와 자동회귀이동평균 기법을 이용하였으며, 내열 안전성은 계산된 온도와 구조물의 녹는점을 비교를 통해 판별을 하였다. 이를 통해 극초음속 비행체의 구조 건전성을 확보하기 위한 설계 방향을 제시하였다.

In hypersonic regime, the complicated interaction between the air and surface of aircraft results in intensive aerodynamic heating on body. Provided this phenomenon occurs on a hypersonic vehicle, the temperature of the body extremely increases. And consequently, thermal deformation is produced and material properties are degraded. Furthermore, those affect both the aerothermoelastic stability and thermal safety of structures significantly. With the background, thermal safety and dynamic stability are studied according to the altitude, flight time and Mach number. Based on the investigation, design guideline is suggested to guarantees the structural integrity of hypersonic vehicles in terms of both of thermal safety and dynamic stability.

키워드

참고문헌

  1. Anderson, J. D., Jr., Hypersonic and High-Temperature Gas Dynamics, 2nd edition, AIAA Education Series, AIAA Journal, Virginia, U.S.A., 2006.
  2. Gibbs, Y., "NASA Armstrong Fact Sheet: X-15 Hypersonic Research Program," NASA. URL: https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-052-DFRC.html [updated 7 August 2017].
  3. Gibbs, Y., "NASA Armstrong Fact Sheet: Hyp er-X Program," NASA. URL: https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-040-DFRC.html [updated 7 Aug 2017].
  4. Majumdar, D., "We Now Know How Russia's New Avangard Hypersonic Boost-Glide Weapon Will Launch," The National Interest, URL: [https://nationalinterest.org/blog/the-buzz/we-now-know-how-russias-new-avangard-hypersonic-boost-glide-25003 [retrieved 20 March 2018]
  5. Panda, A., "Introducting the DF-17: China's Newly Tested Ballistic Missile Armed With a Hypersonic Glide Vehicle," The Diplomat, URL: https://thediplomat.com/2017/12/introducing-thedf-17-chinas-newly-tested-ballistic-missile-armed-with-a-hypersonic-glide-vehicle/ [retrieved 28 December 2017]
  6. Wall, M., "X-37B Military Space Plane's Latest Mystery Mission Passes 600 Days," Space.com, URL:https://www.space.com/x-37b-military-space-plane-otv5-600-days.html [retrieved 30 April 2019]
  7. Kang, Y. C., Kim, K. B., Kim, J. H., Cho, J. Y., and Kim, H. J., "Development of Aerodynamic Thermal Load Element for Structural Design of Hypersonic Vehicle," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 46, No. 11, 2018, pp. 892-901. https://doi.org/10.5139/JKSAS.2018.46.11.892
  8. McNamara, J. J., and Friedmann, P. P., "Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow: Past, Present, and Future," AIAA Journal, Vol. 49, No. 6, 2011, pp. 1089-1122. https://doi.org/10.2514/1.J050882
  9. Gupta, K. K., Choi, S. B., and Ibrahim, H., "Development Fluid-Dynamics Based Aerothermoelastic Simulation Capability with Application to Flight Vehicles," Journal of Aircraft, Vol. 53, No.2, 2016, pp. 360-368. https://doi.org/10.2514/1.C033346
  10. Heeg, J., Gilbert, M. G., and Pototzky, A. S., "Active Control of Aerothermoelastic Effects for a Conceptual Hypersonic Aircraft," Journal of Aircraft, Vol. 30, No. 4, 1993, pp. 453-458. https://doi.org/10.2514/3.56890
  11. Shinjo, J., and Kubota, H., "Numerical Simulation of Surface Melting Due to Aerodynamic Heating," Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 47, No. 158, 2005, pp. 281-286. https://doi.org/10.2322/tjsass.47.281
  12. Kim, S. L., Lee, J. H., Kim, I. S., and Cho, K. R., "Aerodynamic Heating Analysis and Flight Test of KSR-III Rocket," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 32, No. 8, 2004, pp. 54-63. https://doi.org/10.5139/JKSAS.2004.32.8.054
  13. Oh, B. S., and Park, J. J., "Aerodynamic Heating Analysis of KSR-II," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 27, No. 4, 1999, pp. 121-127.
  14. McNamara, J. J., Friedmann, P. P., Powell, K. G., Thuruthimattam, B. J., and Bartels, R. E., "Aeroelastic and Aerothermoelastic Behaviors," AIAA Journal, Vol. 46, No. 10, 2008, pp. 2591-2610. https://doi.org/10.2514/1.36711
  15. Lamorte, N., and Friedmann, P. P., "Hypersonic Aeroelastic and Aeorthermoelastic Studies Using Computational Fluid Dynamics," AIAA Journal, Vol. 52, No. 9, 2014, pp. 2062-2078. https://doi.org/10.2514/1.J053018
  16. Culler, A. J., and McNamara, J. J., "Studies on Fluid-Thermal-Structural Coupling for Aerothermoelasticity in Hypersonic Flow," AIAA Journal, Vol. 48, No. 8, 2010, pp. 1721-1738. https://doi.org/10.2514/1.J050193
  17. Pak, C. G., and Friedmann, P. P., "New time-domain technique for flutter boundary identification," Dynamics specialists Conference, Strcutures, Structurual Dynamics, and Material and Co-located Conference, Dallas, TX, U.S.A., 1992.
  18. McNamara, J. J., and Friedmann, P. P., "Flutter-Boundary Identification for Time-Domain Computational Aeroelasticity," AIAA Journal, Vol. 45, No. 7, 2007, pp. 1546-1555. https://doi.org/10.2514/1.26706
  19. Ellis, D. A., Pagel, L. L., and Schaeffer, D. M., "Design and Fabrication of a Radiative Actively Cooled Honeycomb Sandwich Structural Panel for a Hypersonic Aircraft," NASA-CR-2057, 1978.
  20. MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures, 1998.
  21. Boyer, R., Collings, W. G., and Welsch, G., Materials Properties Handbook: Titanium Alloys, ASM International, 1994.
  22. Zhang, Y., Yi, Y., Huang, S., and He, H., "Influence of Temperature-Dependent Properties of Aluminum Alloy on Evolution of Plastic Strain and Residual Stress during Quenching Process," Metals, Vol. 7, Iss. 6, 2017, URL: https://doi.org/10.3390/met7060228.
  23. Benck, R. F., and Filbey, G. L., Jr., Elastic Constants of Aluminum Alloys 2024-T3510, 5083-H131 and 7039-T64 as Measured by a Sonic Technique, U.S.A. Ballistic Research Laboratories, U.S.A., 1976.
  24. Falkiewicz, N. J., and Cesnik, C. E. S., Crowell, A. R., and McNamara, J. J., "Reduced-Order Aerothermoelastic Framework for Hypersonic Vehicle Control Simulation," AIAA Journal, Vol. 49, No. 8, 2011, pp. 1625-1646. https://doi.org/10.2514/1.J050802
  25. Abaqus Analysis User's Manual v6.10.
  26. Dowell, E. H., A Modern Course in Aeroelasticity, 5th Revision and Enlarged Edition, Springer, Switzerland, 2015.
  27. Bousman, W. G., and Winkler, D. J., "Application of the Moving-Block Analysis," Proceedings of the AIAA Dynamics Specialist Conference, AIAA, New York, 1981, pp. 755-763
  28. Bennett, R. M., and Desmarais, R. N., Curve Fitting of Aeroelastic Transient Response Data with Exponential Functions, NASA SP-415, 1975, pp. 43-58.
  29. Meijer, M. C., and Dala, L., "Zeroth-order flutter prediction for cantilevered plates in supersonic flow," Journal of Fluid and Structures, Vol. 57, 2015, pp. 196-205. https://doi.org/10.1016/j.jfluidstructs.2015.06.018
  30. Lamorte, N., and Friedmann, P. P., "Hypersonic Aeroelastic Stability Boundary Computation using Radial Basis Functions for Mesh Deformation," 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France, 2012.
  31. Harsha, P. T., Keel, L. C., Castrogiovanni, A., and Sherrill, R. T., "X-43A Vehicle Design and Manufacture," AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies, Capua, Italy, 2005.
  32. Klock, R. J., and Cesnik, C. E. S., "Aerothermoelastic Reduced-Order Model of a Hypersonic Vehicle," AIAA Atmospheric Flight Mechanics Conference, Dallas, TX, U.S.A., 2015.