Abstract
Many methods have been developed to solve problems found in sample surveys involving a large number of item non-responses that cause inaccuracies in estimation. However, the non-response adjustment method used under the assumption of random non-response generates a bias in cases where the response rate is affected by the variable of interest. Chung and Shin (2017) and Min and Shin (2018) proposed a method to improve the accuracy of estimation by appropriately adjusting a bias generated when the response rate is a function of the variables of interest. In this study, we studied a case where the response rate function is linear and the error of the super population model follows normal distribution. We also examined the effect of the number of stratum population on bias adjustment. The performance of the proposed estimator was examined through simulation studies and confirmed through actual data analysis.
다수의 항목무응답이 발생한 표본조사에서는 추정의 정확성이 떨어진다. 이를 해결하기 위한 많은 방법이 개발되었으나 응답률이 관심변수에 의해 영향을 받는 경우임에도 이를 고려하지 않고 랜덤으로 무응답이 발생한다는 가정 하에서 사용하는 무응답 처리 방법을 사용하게 되면 편향이 발생하는 것으로 알려져 있다. Chung과 Shin (2017)과 Min과 Shin (2018)은 응답률이 관심변수의 함수인 경우에서 발생된 편향을 적절히 처리하여 추정의 정확성을 향상시키는 방법을 제안하였다. 본 연구에서는 응답률 함수가 선형(linear)이면서 초모집단 모형의 오차가 정규분포를 따르는 경우를 살펴보았으며 층별 모집단 수가 편향 보정에 영향을 주는지도 살펴보았다. 모의실험을 통하여 제안된 추정량의 성능을 살펴보았으며 실제 자료 분석을 통해 이를 확인하였다.