DOI QR코드

DOI QR Code

Nomogram building to predict dyslipidemia using a naïve Bayesian classifier model

순수 베이지안 분류기 모델을 사용하여 이상지질혈증을 예측하는 노모 그램 구축

  • Received : 2019.05.23
  • Accepted : 2019.06.20
  • Published : 2019.08.31

Abstract

Dyslipidemia is a representative chronic disease affecting Koreans that requires continuous management. It is also a known risk factor for cardiovascular disease such as hypertension and diabetes. However, it is difficult to diagnose vascular disease without a medical examination. This study identifies risk factors for the recognition and prevention of dyslipidemia. By integrating them, we construct a statistical instrumental nomogram that can predict the incidence rate while visualizing. Data were from the Korean National Health and Nutrition Examination Survey (KNHANES) for 2013-2016. First, a chi-squared test identified twelve risk factors of dyslipidemia. We used a naïve Bayesian classifier model to construct a nomogram for the dyslipidemia. The constructed nomogram was verified using a receiver operating characteristics curve and calibration plot. Finally, we compared the logistic nomogram previously presented with the Bayesian nomogram proposed in this study.

이상지질혈증은 한국인의 대표적인 성인병이며 지속적인 관리가 필요한 만성질환이다. 또한 고혈압이나 당뇨병과 함께 심혈관계 질환의 위험 요인으로 잘 알려져 있다. 하지만 혈관 질환은 검사 없이는 질병 판단을 하기 어려운 것이 현실이다. 본 연구에서는 이상지질혈증의 인지와 예방을 위하여 관련된 위험 요인을 확인한다. 이들을 종합하여 시각화하면서 발병률 예측까지 가능한 통계적 도구 노모그램을 구축하였다. 데이터는 국민건강영양조사 6기, 7기 제1차년도 (2013-2016) 데이터를 사용하였다. 분석 순서로는 먼저 이상지질혈증의 총 12가지 위험 요인을 교차분석을 통해 확인하였다. 그리고 순수 베이지안 분류기를 이용하여 이상지질혈증에 대한 모형으로 노모그램을 구축하였다. 구축한 노모그램은 ROC 곡선과 Calibration plot을 사용하여 신뢰성을 검증하였다. 마지막으로 이전에 제시했던 로지스틱 노모그램과 본 연구에서 제안한 베이지안 노모그램을 비교하였다.

Keywords

References

  1. Akobeng, A. K. (2007). Understanding diagnostic tests 3: receiver operating characteristic curves, Acta Paediatrica, 96, 644-647. https://doi.org/10.1111/j.1651-2227.2006.00178.x
  2. Bochner, B. H., Kattan, M. W., and Vora, K. C. (2006). Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer, Journal of Clinical Oncology, 24, 3967-3972. https://doi.org/10.1200/JCO.2005.05.3884
  3. Brennan, M. F., Kattan, M. W., Klimstra, D., and Conlon, K. (2004). Prognostic nomogram for patients undergoing resection for adenocarcinoma of the pancreas, Annals of Surgery, 240, 293. https://doi.org/10.1097/01.sla.0000133125.85489.07
  4. Committee for Guidelines for Management of Dyslipidemia (2015). 2015 Korean guidelines for management of dyslipidemia, Journal of Lipid and Atherosclerosis, 4, 61-92. https://doi.org/10.12997/jla.2015.4.1.61
  5. D'Agostino Sr, R. B., Grundy, S., Sullivan, L. M., Wilson, P., and CHD Risk Prediction Group (2001). Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation, Jama, 286, 180-187. https://doi.org/10.1001/jama.286.2.180
  6. Fukui, M., Tanaka, M., Toda, H., Senmaru, T., Sakabe, K., Ushigome, E., Asano, M., Yamazaki, M., Hasegawa, G., Imai, S., and Nakamura, N. (2011). Risk factors for development of diabetes mellitus, hypertension and dyslipidemia, Diabetes Research and Clinical Practice, 94, e15-e18. https://doi.org/10.1016/j.diabres.2011.07.006
  7. Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed), Elsevier, Amsterdam.
  8. Iasonos, A., Schrag, D., Raj, G. V., and Panageas, K. S. (2008). How to build and interpret a nomogram for cancer prognosis, Journal of Clinical Oncology, 26, 1364-1370. https://doi.org/10.1200/JCO.2007.12.9791
  9. Jeon, M. Y., Choi, W. H., and Seo, Y. M. (2017). Risk factors of dyslipidemia and related factors of medication adherence in Korea Adults: KNHANES 2013-2015, Journal of Korean Biological Nursing Science, 19, 131-140. https://doi.org/10.7586/jkbns.2017.19.3.131
  10. Jun, H. J. (2015). Establishment of a nomogram to predict the prognosis of metastatic or recurrent gastric cancer patients, Yonsei University, Seoul.
  11. Korea Centers for Disease Control and Prevention (2016-2018). Korea Health Statistics 2016: Korea National Health and Nutrition Examination Survey (KNHANES VII-1), Cheongju. Available from: https://knhanes.cdc.go.kr
  12. Korean Statistical Information Service (2016). Cause of Death. Available from: http://kosis.kr/
  13. Lee, S. C. and Chang, M. C. (2014). Development and validation of web-based nomogram to predict postoperative invasive component in ductal carcinoma in situ at core needle breast biopsy, Healthcare Informatics Research, 20, 152-156. https://doi.org/10.4258/hir.2014.20.2.152
  14. Mozina, M., Demsar, J., Smrke, D., and Zupan, B. (2004). Nomograms for Naive Bayesian Classifiers and How Can They Help in Medical Data Analysis, MEDINFO 2004, 1762.
  15. Park, J. C. and Lee, J. Y. (2018). How to build nomogram for type 2 diabetes using a naive Bayesian classifier technique, Journal of Applied Statistics, 1-13. https://doi.org/10.1080/02664763.2016.1247786
  16. Qi, L., Ding, X., Tang, W., Li, Q., Mao, D., and Wang, Y. (2015). Prevalence and risk factors associated with dyslipidemia in Chongqing, China. International Journal of Environmental Research and Public Health, 12, 13455-13465. https://doi.org/10.3390/ijerph121013455
  17. Seo, J. H. (2019). Nomogram build for predicting the incidence of chronic diseases - dyslipidemia and chronic obstructive pulmonary disease (Master's thesis), Yeungnam University, Gyeongsan.
  18. Seo, J. H. and Lee, J. Y. (2018). Nomogram construction to predict dyslipidemia based on logistic regression analysis, submitted: Journal of Applied Statistics.
  19. The Korean Society of Lipid and Atherosclerosis (2018). The Korean Guidelines for Management of Dyslipidemia (4th ed). Available from: http://www.lipid.or.kr/bbs/?code=care
  20. Van den Berg, E., Kloppenborg, R. P., Kessels, R. P., Kappelle, L. J., and Biessels, G. J. (2009). Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1792, 470-481. https://doi.org/10.1016/j.bbadis.2008.09.004
  21. World Health Organization. Disease burden and mortality estimates [cited 2018 May 16]. Available from: http://www.who.int/healthinfo/globalburdendisease/estimates/en/index1.html