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Abstract
We propose new classes of estimators of population mean under non-response using bivariate auxiliary infor-

mation. Some improved regression (or difference) type estimators have been proposed in four different situations
of non response along with their properties and the expressions for the bias and mean square errors of the pro-
posed estimators are derived under double (two-stage) sampling scheme. The properties of the suggested class of
estimators are studied and it is observed that the proposed estimators performed better when compared to conven-
tional estimators proposed by Singh and Kumar (Journal of Statistical Planning and Inference, 140, 2536–2550,
2010b), Shabbir and Khan (Communications in Statistics - Theory and Methods, 42, 4127–4145, 2013) and
Bhushan and Naqvi (Journal of Statistics and Management Systems, 18, 573–602, 2015). A comparative study
is also conducted both theoretically as well as empirically in order to support the results.

Keywords: auxiliary information, non-response, mean square error

1. Introduction

Survey statistician often make use of available auxiliary information to improve the precision of esti-
mates. Situations where the population mean of the auxiliary variable is known and the non-response
is present have been dealt with by various authors including Cochran (1977), Rao (1986, 1987), Khare
and Srivastava (1993), Singh and Kumar (2008). However, in situations when the population mean of
the auxiliary variable is unknown, the sample mean x̄′ obtained from a large first phase sample of size
n′ drawn from N units by simple random sampling without replacement is used as suggested by Khare
and Srivastava (1995, 1997), Okafor and Lee (2000), Tabasum and Khan (2004) and recently by Singh
et al. (2010), Singh and Kumar (2010a) among others. It is assumed that all first phase sample units
supplied the auxiliary information, then, a second phase sample of size n (n < n′) is drawn from the n′

by SRSWOR and study variable y is measured on it. At the second phase from the sample of size n,
let n1 units respond and n2 units refuse to respond. Now, we use Hansen and Hurwitz (1946) sampling
strategy to sub-sample r units from n2 non-responding units and enumerated by direct interview so
that r = n2/k, k > 1.

This paper considers the deterministic setup of non-response exactly on the similar lines of Okafor
and Lee (2000) and assumes that the whole population (denoted by Ω) is divided into two groups, one
is that of the responding group of N1 units (denoted by Ω1) and the other non-responding group of N2
units (denoted by Ω2). Let the first and second phase samples be denoted by u and u′ respectively, and
let u1 = u ∩Ω1 and u2 = u ∩Ω2. The sub sample from u2 is denoted by u(2).
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2. Existing estimators

The conventional ratio and regression type estimators for the population mean when there is non-
response on the study variable as well as on the auxiliary variable are given as

ȳR(1) = ȳ∗
x̄′

x̄∗
,

ȳReg(1)
= ȳ∗ + b∗yx

(
x̄′ − x̄∗

)
the mean squared error (MSE)’s of these estimators are given by

MSE
(
ȳR(1)

)
= Ȳ2

[(
fn − f ′n

) {
C2

y +
(
1 − 2Kyx

)
C2

x

}
+ gn

{
C2

y(2) + (1 − 2Kyx(2))C2
x(2)

}
+ f ′nC2

y

]
,

MSE
(
ȳReg(1)

)
= Ȳ2

[(
fn − f ′n

) (
1 − ρ2

yx

)
C2

y + gn

{
C2

y(2) + Kyx

(
Kyx − 2Kyx(2)

)
C2

x(2)

}
+ f ′nC2

y

]
and the conventional ratio and regression type estimators for population mean, when there is a non-
response on the study variable alone, are given as

ȳR(2) = ȳ∗
x̄′

x̄
,

ȳReg(2)
= ȳ∗ + b∗∗yx

(
x̄′ − x̄

)
the MSE’s of these estimators are given by

MSE
(
ȳR(2)

)
= Ȳ2

[(
fn − f ′n

) {
C2

y +
(
1 − 2Kyx

)
C2

x

}
+ gnC2

y(2) + f ′nC2
y

]
,

MSE
(
ȳReg(2)

)
= Ȳ2

[(
fn − f ′n

) (
1 − ρ2

yx

)
C2

y + gnC2
y(2) + f ′nC2

y

]
Singh and Kumar (2010b) proposed the following estimators using information based on two auxiliary
variables x and z for estimating the population mean of the study variable y under different situations
given by

ȳ1
SK =

{
ȳ∗ + b∗yx

(
x̄′ − x̄∗

)} Z̄{
Z̄ + η1

(
z̄∗ − Z̄

)} ,
ȳ2

SK =
{
ȳ∗ + b∗yx

(
x̄′ − x̄∗

)} z̄′

{z̄′ + η2 (z̄∗ − z̄′)} ,

ȳ3
SK =

{
ȳ∗ + b∗∗yx

(
x̄′ − x̄

)} Z̄{
Z̄ + η3

(
z̄ − Z̄

)} ,
ȳ4

SK =
{
ȳ∗ + b∗∗yx

(
x̄′ − x̄

)} z̄′

{z̄′ + η4 (z̄ − z̄′)} ,

where ȳ∗ = (n1/n)ȳ(1) + (n2/n)ȳ∗(2), x̄∗ = (n1/n)x̄(1) + (n2/n)x̄∗(2), z̄∗ = (n1/n)z̄(1) + (n2/n)z̄∗(2), x̄′ =
(1/n′)

∑
(xi), z̄′ = (1/n′)

∑
(zi), x̄ = (1/n)

∑
(xi), and z̄ = (1/n)

∑
(zi) with (ȳ(1), x̄(1), z̄(1)), and (ȳ∗(2), x̄

∗
(2),

z̄∗(2)) being the sample means based on n1 units and sub-sample means based on r units of the variates
(y, x, z) respectively and η1, η2, η3, and η4 are suitably chosen constants.

The MSE’s of these estimators are given by

MSE
(
ȳ1

SK

)
= Ȳ2

[
f ′n

{
C2

y + η1

(
η1 − 2Kyz

)
C2

z

}
+

(
fn − f ′n

) {(
1 − ρ2

yx

)
C2

y + η1 (η1 − 2A∗) C2
z

}
+gn

{
C2

y(2) + Kyx

(
Kyx − 2Kyx(2)

)
C2

x(2) + η1 (η1 − 2B∗) C2
z(2)

}]
,
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MSE
(
ȳ2

SK

)
= Ȳ2

[
f ′nC2

y +
(
fn − f ′n

) {(
1 − ρ2

yx

)
C2

y + η2 (η2 − 2A∗) C2
z

}
+gn

{
C2

y(2) + Kyx

(
Kyx − 2Kyx(2)

)
C2

x(2) + η2 (η2 − 2B∗) C2
z(2)

}]
,

MSE
(
ȳ3

SK

)
= Ȳ2

[
f ′n

{
C2

y + η3

(
η3 − 2Kyz

)
C2

z

}
+

(
fn − f ′n

) {(
1 − ρ2

yx

)
C2

y + η3 (η3 − 2A∗) C2
z

}
+ gnC2

y(2)

]
,

MSE
(
ȳ4

SK

)
= Ȳ2

[
f ′nC2

y +
(
fn − f ′n

) {(
1 − ρ2

yx

)
C2

y + η4 (η4 − 2A∗) C2
z

}
+ gnC2

y(2)

]
,

where

C2
x =

S 2
x

X̄2
, C2

x(2) =
S 2

x(2)

X̄2
, C2

y =
S 2

y

Ȳ2
, C2

y(2) =
S 2

y(2)

Ȳ2
,

ρyx =
S yx

S yS x
, ρyx(2) =

S yx(2)

S y(2)S x(2)
, ρxz =

S xz

S xS z
, ρxz(2) =

S xz(2)

S x(2)S z(2)
,

ρyz =
S yz

S yS z
, ρyz(2) =

S yz(2)

S y(2)S z(2)
, Kyx =

ρyxCy

Cx
, Kyx(2) =

ρyx(2)Cy(2)

Cx(2)
,

Kyz =
ρyzCy

Cz
, Kyz(2) =

ρyz(2)Cy(2)

Cz(2)
, Kxz =

ρxzCx

Cz
, Kxz(2) =

ρxz(2)Cx(2)

Cz(2)
,

A∗ = Kyz − KyxKxz, B∗ = Kyz(2) − KyxKxz(2).

The minimum MSE’s of the above stated estimators are also given by

min MSE
(
ȳ1

SK

)
= MSE

(
ȳReg(1)

)
− Ȳ2

B2
1

A1

 ,
min .MSE

(
ȳ2

SK

)
= MSE

(
ȳReg(1)

)
− Ȳ2

B2
2

A1

 ,
min MSE

(
ȳ3

SK

)
= MSE

(
ȳReg(2)

)
− Ȳ2

B2
3

A2

 ,
min MSE

(
ȳ4

SK

)
= MSE

(
ȳReg(2)

)
− Ȳ2 f ′A∗2C2

z ,

where B1 = f ′n KyzC2
z + ( fn − f ′n)A∗C2

z +gnB∗C2
z(2), A1 = fnC2

z +gnC2
z(2), B2 = ( fn − f ′n)A∗C2

z +gnB∗C2
z(2),

B3 = f ′n Kyz + ( fn − f ′n)A∗, and A2 = fn.
Further, Shabbir and Khan (2013) proposed the following estimators using information based on

two auxiliary variables x and z to estimate the population mean of the study variable y under the
different situations given by

ȳ5
SK = ȳ∗

(
x̄′

x̄∗

)α1
(

Z̄
z̄∗

)α2

+ b∗yx
(
x̄′ − x̄∗

)
+ b∗yz

(
Z̄ − z̄∗

)
,

ȳ6
SK = ȳ∗

(
x̄′

x̄∗

)α3 ( z̄
z̄∗

)α4

+ b∗yx
(
x̄′ − x̄∗

)
+ b∗yz

(
z̄′ − z̄∗

)
,

ȳ7
SK = ȳ∗

(
x̄′

x̄

)α5
(

Z̄
z̄

)α6

+ b∗∗yx
(
x̄′ − x̄

)
+ b∗∗yz

(
Z̄ − z̄

)
,

ȳ8
SK = ȳ∗

(
x̄′

x̄

)α7
(

z̄′

z̄

)α8

+ b∗∗yx
(
x̄′ − x̄

)
+ b∗∗yz

(
z̄′ − z̄

)
,

where α1, α2, α3, α4, α5, α6, α7, and α8 are the characterizing scalars to be chosen suitably and
b∗yx = s∗yx/s

∗2
x , b∗yz = s∗yz/s

∗2
z , b∗∗yx = s∗yx/s

2
x , b∗∗yz = s∗∗yz/s

2
z are simple regression coefficients.
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The MSE’s of these estimators are given by

MSE
(
ȳ5

SK

)
= Ȳ2

[
fnC2

y + gnC2
y(2) +

(
α1 + Kyx

)2
m1 +

(
α2 + Kyz

)2
m2 − 2

(
α1 + Kyx

)
m3

−2
(
α2 + Kyz

)
m4 + 2

(
α1 + Kyx

) (
α2 + Kyz

)
m5

]
,

MSE
(
ȳ6

SK

)
= Ȳ2

[
fnC2

y + gnC2
y(2) +

(
α3 + Kyx

)2
m1 +

(
α4 + Kyz

)2
m′2 − 2

(
α3 + Kyx

)
m3

−2
(
α4 + Kyz

)
m′4 + 2

(
α3 + Kyx

) (
α4 + Kyz

)
m5

]
,

MSE
(
ȳ7

SK

)
= Ȳ2

[
f ′nC2

y + gnC2
y(2) +

{(
fn − f ′n

)
C2

y +
(
α5 + Kyx

)2
C2

x − 2
(
α5 + Kyx

)
ρyxCyCx

+2
(
α5 + Kyx

) (
α6 + Kyz

)
ρxzCxCz + fn

{(
α6 + Kyz

)2
C2

z − 2
(
α6 + Kyz

)
ρyzCyCz

}]
,

MSE
(
ȳ8

SK

)
= Ȳ2

[
f ′nC2

y + gnC2
y(2) +

(
fn − f ′n

) {
C2

y +
(
α7 + Kyx

)2
C2

x − 2
(
α7 + Kyx

)
ρyxCyCx

+
(
α8 + Kyz

)2
C2

z − 2
(
α8 + Kyz

)
ρyzCyCz + 2

(
α7 + Kyx

) (
α8 + Kyz

)
ρxzCxCz

+ fn
{(
α6 + Kyz

)2
C2

z − 2
(
α6 + Kyz

)
ρyzCyCz

}]
,

where

m1 =
(
fn − f ′n

)
C2

x + gnC2
x(2), m2 = fnC2

z + gnC2
z(2),

m3 =
(
fn − f ′n

)
ρyxCyCx + gnρyx(2)Cy(2)Cx(2), m4 = fnρyzCyCz + gnρyz(2)Cy(2)Cz(2),

m5 =
(
fn − f ′n

)
ρxzCxCz + gnρxz(2)Cx(2)Cz(2), m′2 =

(
fn − f ′n

)
C2

z + gnC2
z(2),

m′4 =
(
fn − f ′n

)
ρyzCyCz + gnρyz(2)Cy(2)Cz(2).

Also, the minimum MSE’s of the above stated estimators are given by

min MSE
(
ȳ5

SK

)
= MSE (ȳ∗) − Ȳ2

m2m2
3 + m1m2

4 − 2m3m4m5

m1m2 − m2
5

 ,
min MSE

(
ȳ6

SK

)
= MSE (ȳ∗) − Ȳ2

m′2m2
3 + m1m′24 − 2m3m4m5

m1m′2 − m2
5

 ,
min MSE

(
ȳ7

SK

)
= MSE (ȳ∗) − Ȳ2


{
fnρ2

yz + f ′n
(
ρ2

yx − 2ρyxρyzρxz

)}{
fn −

(
fn − f ′n

)
ρ2

yx

}  ,
min MSE

(
ȳ8

SK

)
= MSE (ȳ∗) − Ȳ2 f ′nC2

y

ρ
2
yx + ρ

2
yz − 2ρyxρyzρxz(
1 − ρ2

xz

)
 .

Bhushan and Naqvi (2015) similarly proposed some generalized classes of estimators in presence of
non-response using two auxiliary information given by

t1
(BN) = f1

(
ȳ∗, x̄∗, x̄′, u

)
, t2

(BN) = f2
(
ȳ∗, x̄∗, x̄′, z̄∗, z̄′

)
,

t3
(BN) = f3

(
ȳ∗, x̄∗, x̄′, v

)
, t4

(BN) = f4
(
ȳ∗, x̄, x̄′, z̄, z̄′

)
,
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where u = z̄∗/Z̄ and v = z̄/Z̄ and these estimators satisfying the following conditions.

f1
(
Ȳ , X̄, X̄, 1

)
= Ȳ , f 0

1 = 1, f 1
1 = − f 2

1 , f2
(
Ȳ , X̄, X̄, Z̄, Z̄

)
= Ȳ , f 0

2 = 1, f 1
2 = − f 2

2 ,

f 3
2 = − f 4

2 , f3
(
Ȳ , X̄, X̄, 1

)
= Ȳ , f 0

3 = 1, f 1
3 = − f 2

3 , f4
(
Ȳ , X̄, X̄, Z̄, Z̄

)
= Ȳ , f 0

4 = 1,

f 1
4 = − f 2

4 , and f 3
4 = − f 4

4 .

The MSE’s and minimum MSE’s are given by

MSE
(
t1
(BN)

)
= MSE (ȳ∗) + η6

(
f 3
1

)2
+ 2Ȳη7 f 3

1 + X̄2η3

(
f 1
1

)2
+ 2Ȳ X̄η8 f 1

1 + 2X̄η9 f 1
1 f 3

1 ,

MSE
(
t2
(BN)

)
= MSE (ȳ∗) + X̄2η3

(
f 1
2

)2
+ Z̄2η10

(
f 3
2

)2
+ 2X̄Z̄ f 1

2 f 3
2 + 2Ȳ X̄η8 f 1

2 + 2ȲZ̄η11 f 3
2 ,

MSE
(
t3
(BN)

)
= MSE (ȳ∗) + X̄2η′3

(
f 1
3

)2
+ η4

(
f 3
3

)2
+ 2X̄η′9 f 1

3 f 3
3 + 2Ȳ X̄η′8 f 1

3 + 2Ȳη5 f 3
3 ,

MSE
(
t4
(BN)

)
= MSE (ȳ∗) + X̄2η′3

(
f 1
4

)2
+ Z̄2η10

(
f 3
4

)2
+ 2X̄Z̄η′9 f 1

4 f 3
4 + 2Ȳ X̄η′8 f 1

4 + 2ȲZ̄η′11 f 3
4 ,

where

m6 = fnC2
z , m7 = fnρyzCyCz,

m′1 =
(
fn − f ′n

)
C2

x , m′3 =
(
fn − f ′n

)
ρyxCyCx,

m′5 =
(
fn − f ′n

)
ρxzCxCz, m′6 =

(
fn − f ′n

)
C2

z ,

m′7 =
(
fn − f ′n

)
ρyzCyCz.

The minimum MSE’s of the above stated estimators are given by

min MSE
(
t1
(BN)

)
= MSE (ȳ∗) − Ȳ2


(
2m3m4m5 − m2m2

3 − m1m2
4

)(
m2

5 − m1m2

)
 ,

min MSE
(
t2
(BN)

)
= MSE (ȳ∗) − Ȳ2


(
2m3m′4m5 − m′2m2

3 − m1m′24
)(

m2
5 − m1m′2

)
 ,

min MSE
(
t3
(BN)

)
= MSE (ȳ∗) − Ȳ2


(
2m7m′3m′5 − m′1m2

7 − m6m′23
)(

m′25 − m′1m6

)
 ,

min MSE
(
t4
(BN)

)
= MSE (ȳ∗) − Ȳ2


(
2m′3m′5m′7 − m′1m′27 − m′6m′23

)(
m′25 − m′1m′6

)
 .

3. Proposed estimators

Let

t = ȳ∗,

MSE (ȳ∗) = Ȳ2
{
fnC2

y + gnC2
y(2)

}
.

Searls (1964) proposed a useful technique to improve the efficiency of any estimator.
Let us consider the Searls type estimators under non-response given by

T = αt
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so that

MSE (T ) =
Ȳ2MSE (t)

Ȳ2 +MSE (t)
.

It can be easily observed that the minimum MSE of T is always lesser than t.
Following Singh and Kumar (2010b), Shabbir and Khan (2013) and Bhushan and Naqvi (2015) by

using the Searls type transformation, we propose the following efficient estimators using information
based on two auxiliary variables for estimating the population mean of the study variable in presence
of a non-response under the strategies given below.

• Strategy I: In this strategy, we assume that non-response occurs on the study variable as well as
on the auxiliary variable and the population mean X̄ of the first auxiliary variable x is unknown;
however, the population mean Z̄ of the second auxiliary variable z is known. The proposed estimator
for estimating the population mean is

T 1
(BP) = γ1ȳ∗ + θ1

(
x̄∗ − x̄′

)
+ ω1

(
z̄∗ − Z̄

)
.

• Strategy II: In this strategy, we assume that non-response occurs on the study variable as well
as on the auxiliary variable and the population mean X̄ of first auxiliary variable x as well as the
population mean Z̄ of the second auxiliary variable z if both are unknown. The proposed estimator
for estimating the population mean is given by

T 2
(BP) = γ2ȳ∗ + θ2

(
x̄∗ − x̄′

)
+ ω2

(
z̄∗ − z̄′

)
.

• Strategy III: In this strategy, we assume that non-response occurs on the study variable only and
the population mean X̄ of first auxiliary variable x is unknown; however, the population mean Z̄
of the second auxiliary variable z is known. The proposed estimator for estimating the population
mean is

T 3
(BP) = γ3ȳ∗ + θ3

(
x̄ − x̄′

)
+ ω3

(
z̄ − Z̄

)
.

• Strategy IV: In this strategy, we assume that non-response occurs on the study variable only and
the population mean if both the auxiliary variables are unknown. The proposed estimator under this
strategy is

T 4
(BP) = γ4ȳ∗ + θ4

(
x̄ − x̄′

)
+ ω4

(
z̄ − z̄′

)
.

Theorem 1. The bias and minimum mean square error of the proposed estimators T k
(BP), k = 1, 2, 3, 4

are given by

Bias
(
T k

(BP)

)
= (γk − 1) Ȳ ,

min MSE
(
T k

(BP)

)
=

Ȳ2 min MSE
(
tk
(BN)

)
Ȳ2 +min MSE

(
tk
(BN)

) .
Proof: Now, for the bias amd MSE of T 1

(BP), we have

T 1
(BP) = γ1Ȳ

(
1 + ε∗0

)
+ θ1

{
X̄

(
1 + ε∗1

) − X̄
(
1 + ε′1

)}
+ ω1

{
Z̄

(
1 + ε∗2

) − Z̄
}
.
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Thus,

T 1
(BP) − Ȳ = (γ1 − 1) Ȳ + γ1Ȳε∗0 + θ1X̄

(
ε∗1 − ε′1

)
+ ω1Z̄ε∗2

for bias taking expectation on both sides, we get

Bias
(
T 1

(BP)

)
= (γ1 − 1) Ȳ

for MSE, squaring and taking expectation on both sides of the above equation, we get

MSE
(
T 1

(BP)

)
= (γ1 − 1)2 Ȳ2 + γ2

1Ȳ2
{
fnC2

y + gnC2
y(2)

}
+ θ21X̄2

{(
fn − f ′n

)
C2

x + gnC2
x(2)

}
+ ω2

1Z̄2
{
fnC2

z + gnC2
z(2)

}
+ 2γ1θ1X̄Ȳ

{(
fn − f ′n

)
ρyxCyCx + gnρyx(2)Cy(2)Cx(2)

}
+ 2γ1ω1ȲZ̄

{
fnρyzCyCz + gnρyz(2)Cy(2)Cz(2)

}
+ 2θ1ω1X̄Z̄

{(
fn − f ′n

)
ρxzCxCz

+gnρxz(2)Cx(2)Cz(2)
}
,

MSE
(
T 1

(BP)

)
= Ȳ2 + γ2

1Ȳ2 + γ2
1Var (ȳ∗) − 2γ1Ȳ2 + θ21X̄2m1 + ω

2
1Z̄2m2 + 2γ1θ1X̄Ȳm3

+ 2γ1ω1ȲZ̄m4 + 2θ1ω1X̄Z̄m5.

Differentiating MSE(T 1
(BP)), for optimum value of the γ1, θ1, and ω1, partially with respect to γ1,

θ1, ω1, and equating to zero. we get the optimum value of γ1, θ1, and ω1 are given by

∂MSE
(
T 1

(BP)

)
∂γ1

= 0,
∂MSE

(
T 1

(BP)

)
∂θ1

= 0, and
∂MSE

(
T 1

(BP)

)
∂ω1

= 0

so that

γ1 =
Ȳ2 − θ1X̄Ȳm3 − ω1ȲZ̄m4

Ȳ2 + A
, θ1 =

−γ1Ȳm3 − ω1Z̄m5

X̄m1
, ω1 =

−γ1Ȳm4 − θ1X̄m5

Z̄m2

solving these equations, we get

γ1opt =
Ȳ2

Ȳ2 + A − Ȳ2
{

m2m2
3+m1m2

4−2m3m4m5

m1m2−m2
5

} ,
θ1opt = γ1opt

(
Ȳ
X̄

) m4m5 − m2m3

m1m2 − m2
5

 ,
ω1opt = γ1opt

(
Ȳ
Z̄

) m3m5 − m1m4

m1m2 − m2
5

 .
By using these optimum values of γ1, θ1, and ω1 in MSE(T 1

(BP)), we get the minimum mean square
error as

min MSE
(
T 1

(BP)

)
=

Ȳ2
[
A − Ȳ2

{
m2m2

3+m1m2
4−2m3m4m5

m1m2−m2
5

}]
Ȳ2 +

[
A − Ȳ2

{
m2m2

3+m1m2
4−2m3m4m5

m1m2−m2
5

}] ,
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where A = MSE(ȳ∗)

min MSE
(
T 1

(BP)

)
=

Ȳ2 min .MSE
(
t1
(BN)

)
Ȳ2 +min MSE

(
t1
(BN)

) .
The derivation of MSE(T i

(BP)), i = 2, 3, 4 can easily be done on similar lines so that the optimum
values of characterizing scalars are

γ2opt =
Ȳ2

Ȳ2 + A − Ȳ2
{

m′2m2
3+m1m′24 −2m3m′4m5

m1m′2−m2
5

} ,
θ2opt = γ2opt

(
Ȳ
X̄

) m′4m5 − m′2m3

m1m′2 − m2
5

 ,
ω2opt = γ2opt

(
Ȳ
Z̄

) m3m5 − m1m′4
m1m′2 − m2

5

 ,
γ3opt =

Ȳ2

Ȳ2 + A − Ȳ2
{

m′1m2
7+m6m′23 −2m7m′3m′5

m′1m6−m′25

} ,
θ3opt = γ3opt

(
Ȳ
X̄

) m′5m7 − m′3m6

m′1m6 − m′25

 ,
ω3opt = γ3opt

(
Ȳ
Z̄

) m′3m5 − m′1m7

m′1m6 − m′25

 ,
γ4opt =

Ȳ2

Ȳ2 + A − −Ȳ2
{

m′1m′27 +m′6m′23 −2m′3m′5m′7
m′1m′6−m′25

} ,
θ4opt = γ4opt

(
Ȳ
X̄

) m′5m′7 − m′3m′6
m′1m′6 − m′25

 ,
ω4opt = γ4opt

(
Ȳ
Z̄

) m′3m′5 − m′1m′7
m′1m′6 − m′25

 .
�

Corollary 1. The proposed estimators T k
(BP), k = 1, 2, 3, 4 has always lesser MSE than the conven-

tional estimators tk
(BN), k = 1, 2, 3, 4. In other words,

min MSE
(
T k

(BP)

)
≤ min MSE

(
tk
(BN)

)
, i = 1, 2, 3, 4.

Proof: Since Ȳ2/{Ȳ2 +MSE(tk
BN)} < 1, i = 1, 2, 3, 4. Hence the prove. �

4. An empirical study

We have conducted an empirical study on 2 population described below along with their key parame-
ters.
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1. Data considered from the book “Advanced sampling theory with applications” by Sarjinder Singh
(p.1114). The first 30% (i.e., 21) units have been considered as non-response units.

Fish caught: Estimated number of fish caught by marine boats. Descriptive parameters of the
population:

Y = Estimated number of fish caught during 1995,
X = Estimated number of fish caught during 1993,
Z = Estimated number of fish caught during 1992,
N = 69, n′ = 55, n = 20, Ȳ = 4514.899, Z̄ = 4230.174, X̄ = 4591.072,
Cy = 1.3509, Cz = 1.3164, Cx = 1.3755, Cy(2) = 1.3850, Cz(2) = 1.3640,
Cx(2) = 1.4160, ρyx = 0.9564, ρyz = 0.9538, ρxz = 0.9632, ρyx(2) = 0.9674,
ρyz(2) = 0.9668, ρxz(2) = 0.9699.

2. The present data belong to the data on physical growth of upper socio-economic group of 95 school
going children of Varanasi under an ICMR study, Department of Pediatrics, BHU during 1983–
1984 has been taken under study, (Khare and Sinha, 2007). The first 25% (i.e., 24 children) units
have been considered as non-response units. The value of parameters related to the study character
y (the weight of children in kg) and the auxiliary character x (skull circumference of the children
in cm) and additional auxiliary character z (chest circumference of the children in cm) have been
given as:

N = 95, n′ = 70, n = 35, Ȳ = 19.4968, Z̄ = 55.8611, X̄ = 51.1726, Cy = 0.15613,
Cz = 0.05860, Cx = 0.03006, Cy(2) = 0.12075, Cz(2) = 0.05402, Cx(2) = 0.02478,
ρyx = 0.328, ρyz = 0.846, ρxz = 0.297, ρyx(2) = 0.477, ρyz(2) = 0.729, ρxz(2) = 0.570.

The percentage relative efficiency (PRE) of the proposed estimator is calculated by

PRE =
Var(ȳ∗)

min MSE(conventional and proposed estimators)
× 100.

Tables 1 and 2 suggests that the proposed estimator T 1
(BP) under strategy 1 is more efficient than

the Hansen-Hurwitz estimator ȳ∗, conventional ratio and regression estimators ȳR(1) and ȳReg(1)
, Singh

and Kumar estimator ȳ1
SK, Shabbir and Khan estimator ȳ5

SK and Bhushan and Naqvi estimator t1
(BN) for

the different values of k = 2, 3, 4. Under the Strategy 2, 3, and 4 the proposed estimators T 2
(BP), T 3

(BP),
and T 4

(BP) are also more efficient than the all conventional estimators along with respective strategy.

5. Conclusion

This paper shows that the proposed estimators using the Searls (1964) philosophy in presence of
bivariate auxiliary information perform better than the estimators suggested by Singh and Kumar
(2010b), Shabbir and Khan (2013) and Bhushan and Naqvi (2015) in terms of PRE. This fact has been
also supported through an empirical study. Further, the proposed estimators are important because
they provide an improvement over the regression estimators, which are BLUEs. The result of this
paper is quite illuminating, both theoretically and empirically.
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Table 1: MSE and PRE of the estimators with respect to ȳ∗ for population 1

Estimator 1/k
1/2 1/3 1/4

ȳ∗ 1915872(100) 2510898(100) 3105923(100)
ȳR(1) 282681.3(677.749) 322643.4(778.227) 362605.6(856.557)
ȳR(2) 837745.0(228.694) 1432771(175.248) 2027797(153.167)
ȳReg(1) 276385.4(693.188) 314578.8(798.177) 352772.3(880.433)
ȳReg(2) 833217.8(229.936) 1428243.7(175.803) 2023269.5(153.510)

Strategy I

ȳ1
SK 296847.3(845.855) 335450.7(925.896) 0.1239(231.661)

ȳ5
SK 141773.2(1351.363) 173677.5(1445.724) 205166.8(1513.853)

t1(BN) 141773.2(1351.363) 173677.5(1445.724) 205166.8(1513.853)
T 1

(BP) 140794.0(1360.762) 172210.2(1458.042) 203122.4(1529.09)

Strategy II

ȳ2
SK 274526.2(697.882) 311980.6(804.825) 349432.1(888.849)

ȳ6
SK 250802.88(763.895) 280812.98(894.153) 310819.87(999.268)

t2(BN) 250802.9(763.895) 280813(894.1529) 310819.9(999.268)
T 2

(BP) 247754.6(773.294) 276997.1(906.470) 306151.7(1014.505)

Strategy III

ȳ3
SK 811473.8(236.098) 1406500(178.521) 2001526(155.178)

ȳ7
SK 704277.1(272.0338) 1299303(193.2496) 1894329(163.959)

t3(BN) 704277.1(272.0338) 1299303(193.2496) 1894329(163.959)
T 3

(BP) 680757.0(281.4325) 1221448(205.5674) 173256(179.196)

Strategy IV

ȳ4
SK 831960.3(230.284) 1426986(175.958) 2022012(153.606)

ȳ8
SK 815811.2(234.843) 1410837(177.972) 2005863(154.842)

t4(BN) 815811.2(234.843) 1410837(177.972) 2005863(154.842)
T 4

(BP) 784417.6(244.241) 1319511(190.29) 1826164(170.079)

MSE = mean squared error; PRE = percentage relative efficiency.

Table 2: MSE and PRE of the estimators with respect to ȳ∗ for population 2

Estimator 1/k
1/2 1/3 1/4

ȳ∗ 0.207214(100) 0.24722(100) 0.287225(100)
ȳR(1) 0.1893(109.489) 0.2231(110.805) 0.2569(104.289)
ȳR(2) 0.1954(106.045) 0.2354(105.018) 0.2754(104.289)
ȳReg(1) 0.1845(112.210) 0.2161(114.415) 0.2476(115.992)
ȳReg(2) 0.1930(107.380) 0.2330(106.113) 0.2730(105.217)

Strategy I

ȳ1
SK 0.0789(262.596) 0.1019(242.622) 0.1239(231.661)

ȳ5
SK 0.0679(304.874) 0.0880(280.615) 0.1076(266.708)

t1(BN) 0.0679(304.874) 0.0881(280.615) 0.1018(266.708)
T 1

(BP) 0.0679(304.929) 0.0888(280.681) 0.1077(266.784)

Strategy II

ȳ2
SK 0.1155(179.405) 0.1364(181.270) 0.1571(182.857)

ȳ6
SK 0.1014(204.173) 0.1230(200.841) 0.1437(199.851)

t2(BN) 0.0926(223.688) 0.1124(219.768) 0.1318(217.844)
T 2

(BP) 0.0926(223.742) 0.1125(219.832) 0.1318(217.919)

Strategy III

ȳ3
SK 0.0941(220.152) 0.1341(184.315) 0.1741(164.944)

ȳ7
SK 0.0867(238.995) 0.1267(195.110) 0.1667(172.286)

t3(BN) 0.0519(399.098) 0.0919(268.933) 0.1319(217.708)
T 3

(BP) 0.0519(399.153) 0.0919(268.998) 0.1319(217.783)

Strategy IV

ȳ4
SK 0.1118(174.432) 0.1588(155.681) 0.1988(144.476)

ȳ8
SK 0.1116(185.646) 0.1516(163.049) 0.1916(149.886)

t4(BN) 0.1118(185.647) 0.1516(163.049) 0.1917(149.887)
T 4

(BP) 0.1116(185.701) 0.1517(163.114) 0.1915(149.962)

MSE = mean squared error; PRE = percentage relative efficiency.
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