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Abstract
This paper discusses a method for obtaining nonnegative estimates for variance components in a random

effects model. A variance component should be positive by definition. Nevertheless, estimates of variance
components are sometimes given as negative values, which is not desirable. The proposed method is based on
two basic ideas. One is the identification of the orthogonal vector subspaces according to factors and the other
is to ascertain the projection in each orthogonal vector subspace. Hence, an observation vector can be denoted
by the sum of projections. The method suggested here always produces nonnegative estimates using projections.
Hartley’s synthesis is used for the calculation of expected values of quadratic forms. It also discusses how to set
up a residual model for each projection.
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1. Introduction

When a linear model contains more than one random component the model is said to be a random
effects model or a mixed effects model depending on whether the fixed effects are or not. A random
effect is a random variable representing the effect of a randomly chosen level from a population of
levels that a random factor can assume. Many papers have tried to solve negative values of variance
components of random effects included in a linear model, which is an underlying model for the analy-
sis of data from a certain experiment. Henderson (1953) suggested three methods to estimate variance
components that came to be known as Henderson’s method 1, 2, and 3. Searle (1971) dealt with them
in detail. There are many papers devoted to the estimation of variance components; however, it is
unfortunate that any method discussed in papers can have negative estimates of variances. Milliken
and Johnson (1984) suggested a proposal for eliminating negative estimates. EI-Leithy et al. (2016)
and Searle et al. (2009) discussed the nonnegative estimation of variance components in mixed linear
models. This paper proposes a proper method that always yields nonnegative estimates for variance
components. It is based on the concept of projections defined on a vector space. The basic idea of
projection and related concepts are well-defined by Johnson and Wichern (1988). Milliken and John-
son (1984) used the following data as an example for estimating variance components. It is again used
here to compare estimates between the Henderson’s method 1 and the method proposed in this paper
that produces nonnegative estimates for variance components.
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Table 1: Data for two-way design

RC11 RC12 RC13 RC21 RC22 RC23
10 13 21 16 13 11
12 15 19 18 19 13
11 14

2. Data and model

The data in Table 1 are from Milliken and Johnson (1984). R and C denote the random factors of a
two-way treatment structure in a completely randomized design structure.

First, consider a more general two-way random components model for analyzing such a data. The
model of general form is given by

yi jk = µ+αi + β j + (αβ)i j + ϵi jk, i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , ni j,

where yi jk is the response from the kth experimental unit in the treatment combination of ith level of R
and jth level of C. µ is the grand mean, αi is the effect of the ith level of the random factor R and is
assumed to be distributed i.i.d. N(0, σ2

α), and β j is the effect of the jth level of the random factor C,
which is assumed to be distributed i.i.d. N(0, σ2

β). It also assumes (αβ)i j the effect of the interaction
R × C and is assumed to be distributed i.i.d. N(0, σ2

αβ), and ϵi jk is the random error associated with
yi jk where it is assumed ϵi jk are distributed i.i.d. N(0, σ2

ϵ ). These assumptions allow the variances and
covariances of the observations to be evaluated. The variance of an observation is

Var(yi jk) = Var
(
µ + αi + β j + (αβ)i j + ϵi jk

)
= σ2

α + σ
2
β + σ

2
αβ + σ

2
ϵ .

There are four components in the variance of yi jk. The above model can be described in matrix
notation as

y = jµ + X1α + X2β + X3(αβ) + ϵ, (2.1)

where j is an n × 1 vector of ones (n =
∑a

i=1
∑b

j=1 ni j), X1 is an n × a coefficient matrix of α, α is
the a × 1 random vector assumed to have N(0, σ2

αIa), X2 is an n × b coefficient matrix of β, β is the
b × 1 random vector assumed to have N(0, σ2

βIb), X3 is an n × ab coefficient matrix of (αβ), (αβ) is
the ab × 1 random vector assumed to have N(0, σ2

αβIab), and ϵ is the n × 1 random vector assumed to
be distributed N(0, σ2

ϵ In). The covariance matrix of the observation vector y denoted by Σ is

Σ = Var(y)
= Var ( jµ + X1α + X2β + X3(αβ) + ϵ)

= σ2
αX1X

′

1 + σ
2
βX2X

′

2 + σ
2
αβX3X

′

3 + σ
2
ϵ In.

The analysis of the variance method called Henderson’s Method 1 can be used for the estimation of
variance components. But the problem is that it sometimes yields negative values with which we do
not agree as an estimate of variance. This unpleasant thing can be avoided by way of projections. Let
x and y be vectors in an n dimensional vector space. The projection of y on the vector x denoted by
px is

px = x(x′x)−1x′y.
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Let X be a model matrix from (2.1) where X is defined as X = ( j, X1, X2, X3). Projection of y onto
the vector subspace generated by X is

pX = X
(
X
′
X
)−

X
′
y

= XX−y, (2.2)

where X− is Moore-Penrose generalized inverse and denotes (X′X)−X′. The definition of it is well
defined on Graybill (1983) as terminology g-inverse. If X is of full rank, (X′X)−1 is used instead of
(X′X)− .

3. Projection method

A linear model is called a random components model when it has random components only except
µ. Random components may happen from the treatment structure or design structure (or both) in
an experiment. Henderson (1953) suggested Method 1 for the estimation of variance components
in a random model. An alternative method that always produces nonnegative values is discussed
because it allows impermissible estimates as variances. An observation vector y in a vector space
can be decomposed into projections that are defined on orthogonal vector subspaces generated by
model matrices from fitting sub-models of model (2.1). This implies that the projection defined on
each orthogonal vector subspace has its own nonnegative variation not affected by other projections.
Henceforth, there is the possibility of finding nonnegative variance estimates. To find nonnegative
estimates of variance components in model (2.1) first consider fitting a full model. In fitting (2.1), we
get (2.2). After fitting the whole model we get the residual vector r,

r = (I − XX−)(Xδ + ϵ)
= (I − XX−)ϵ, (3.1)

where δ denotes (µ,α,β, (αβ))′. From (3.1) we see that the error vector subspace is generated by
sub-model matrix (I − XX−). Let the residual model matrix be X f . The residual sum of squares can
be obtained by the squared distance of the projection of r onto the error space. The residual random
vector r has only one random component ϵ which has the information about σ2

ϵ . The projection of r
denoted by pe is given by

pe = [(I − XX−)][(I − XX−)]−r
= X f X−f r,

where X f = I − XX−. So, the residual sum of squares denoted by S S e is

p′e pe = r′X f X−f r

= y′(I − XX−)y. (3.2)

XX− is the projection of y into the vector subspace generated by the model matrix X. Second, think
of the residual random model for the estimation of σ2

αβ and σ2
ϵ . The model is

rb =
(
I − XbX−b

)
(Xbδb + X3(αβ) + ϵ)

=
(
I − XbX−b

)
X3(αβ) + ϵb, (3.3)
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where Xb = ( j, X1, X2), δb = (µ,α,β)′, and ϵb = (I − XbX−b )ϵ. Letting S S b be the sum of squares
adjusted for δb, S S b = rb

′rb. E(S S b) will reveal information about the two variance components σ2
αβ

and σ2
ϵ . The projection of rb into the vector space generated by sub-model matrix is revealed as

pab =
[(

I − XbX−b
)

X3

] [(
I − XbX−b

)
X3

]−
rb

= XαβX−αβrb,

where Xαβ = (I − XbX−b )X3. The sum of squares due to (αβ) is the squared length of the projection
which is expressed by p′ab pab. Then we can see that S S b = p′ab pab + p′e pe. From (3.3), it can be
seen the residual random vector rb has two variance components σ2

αβ and σ2
ϵ . These are estimated

separately from each corresponding vector subspace that is orthogonal to each other. Third, for the
estimation of variance component σ2

β a model to be fitted is given by

ra =
(
I − XaX−a

)
(Xaδa + X2β + X3(αβ) + ϵ)

= (I − XaX−a )X2β + ϵa, (3.4)

where Xa = ( j, X1), δa = (µ,α)′, and ϵa = (I − XaX−a )(X3(αβ) + ϵ). It should be noted that ra has
three variance components from (3.4), one of which is estimated from the estimation space and the
others are from the error space. Hence, it has the information about σ2

β, σ
2
αβ, and σ2

ϵ . Let S S a be
ra
′ra. The projection denoted by pb is given as

pb =
[(

I − XaX−a
)

X2
] [(

I − XaX−a
)

X−2
]

ra

= XβX−β ra,

where Xβ = (I − XaX−a )X2. The sum of squares due to β is given by the squared distance of the
projection p′b pb. So, S S a = p′b pb + p′ab pab + p′e pe. Lastly, the fitting model for σ2

α is

r j =
(
I − X jX−j

) (
X jδ j + X1α + X2β + X3(αβ) + ϵ

)
=
(
I − X jX−j

)
X1α + ϵ j, (3.5)

where X j = j, δ j = µ, and ϵ j = (I − X jX−j )(X2β + X3(αβ) + ϵ). Let S S j be r′jr j. Since the residual
random vector has all four random components, it has the information about σ2

α, σ
2
β, σ

2
αβ, and σ2

ϵ .
From (3.5), σ2

α can be estimated in the estimation space independently of the others. The projection
of r j into the space generated by (I − X jX−j )X1 is

pa =
[(

I − X jX−j
)

X1

] [(
I − X jX−j

)
X1

]−
r j

= XαX−α r j,

where Xα = (I − X jX j
−)X1. The sum of squares adjusted for α is p′a pa. Hence, S S j = p′a pa + p′b pb +

p′ab pab + p′e pe. It should be noted that random residual models are derived in a reverse order using the
residual vector. After establishing the model in each step, identify the model matrix associated with
the random effects and then derive the corresponding projection at that step using the matrix. Then
calculate the sum of squares due to random effects in terms of projection.
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4. Expectations of quadratic forms

Variance components are estimated by equating the sums of squares to expected values. The sums
of squares are quadratic forms in the observations. Hartleys synthesis (Hartley, 1967) is used for
the calculation of the expected values of quadratic forms. The method applies to the calculations of
the coefficients of variance components of the expected value of quadratic forms in observations as
a variation source. Let Q be a quadratic form in the observation vector y and q = y′Qy where Q is
assumed to be a symmetric matrix of constants. Then the expectation of Q is normally given by

E
(
y′Qy
)
= Tr
[
QE
(
yy′
)]

= Tr(QΣ) + µ2 j′Q j.

The matrix of a quadratic form in y for the analysis of variance can be constructed such that µ2 j′Q j =
0. Hence, the expectation of the quadratic form that does not depend on µ is

E(y′Qy) = Tr(QΣ)

= Tr
[
Q
(
σ2
αX1X

′

1 + σ
2
βX2X

′

2 + σαβ
2X3X

′

3 + σ
2
ϵ In

)]
= σ2

αTr
(
X
′

1QX1

)
+ σ2

βTr
(
X
′

2QX2

)
+ σ2

αβTr
(
X
′

3QX3

)
+ σ2

ϵTr(Q),

where Tr(Q) denotes the trace of the square matrix Q. It should be noted that the Tr(X
′

iQXi) can vary
at times because of the dependence of sub-model matrices Xi’s which are not orthogonal to each other.
For the calculation of the coefficients of variance components orthogonal sub-model matrices are used
instead of Xi’s. First, think of the coefficients of σ2

ϵ . From the equation of (3.2) the expectation of
S S e is

E
(
p′e pe
)
= E
(
r′(I − XX−)

(
I − XX−

)− r
)

= E
[
y′
(
I − XX−

)
y
]

= ce1σ
2
ϵ + ce2σ

2
αβ + ce3σ

2
β + ce4σ

2
α, (4.1)

where y is supposed of consisting of orthogonal components vectors. First, the coefficient of σ2
ϵ , ce1

is obtained by using X f , which is the residual model matrix of (3.1). That is,

Tr
(
X
′

f
(
I − XX−

)
X f

)
= Tr
(
(I − XX−)′(I − XX−)(I − XX−)

)
= Tr(I − XX−).

Second, the coefficient of σ2
αβ, ce2 is given as

Tr
(
X
′

αβ(I − XX−)Xαβ
)
= Tr
(
X
′

3

(
I − XbX−b

)
(I − XX−)

(
I − XbX−b

)
X3

)
= 0,

which shows Xαβ and I − XX− are orthogonal matrices. Third, the coefficient of σ2
β, ce3 is given as

Tr
(
X
′

β(I − XX−)Xβ
)
= Tr
(
X
′

2(I − XaX−a )(I − XX−)(I − XaX−a )X2

)
,

= 0,
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where Xβ denotes the model matrix of (3.4). It shows Xβ and I−XX− are orthogonal matrices. Fourth,
the coefficient of σ2

α, ce4, is given as

Tr
(
X
′

α(I − XX−
)

Xα) = Tr
(
X
′

1(I − XaX−a )(I − XX−)(I − XaX−a )X1

)
= 0,

where Xα is the model matrix of (3.5). This expression also shows Xα and I − XX− are orthogonal
matrices. All matrices associated with the variance components σ2

αβ, σ
2
β, and σ2

α are orthogonal to the
coefficient matrix of the random error vector ϵ. Hence, (4.1) is reduced to

E
(
p′e pe
)
= Tr(I − XX−)σ2

ϵ

= ce1σ
2
ϵ .

Next, we compute E(S S b) having two variance components because the random residual vector rb

has random effects related to σ2
αβ and σ2

ϵ . E(S S b) is

E
(
r′brb

)
= E
(
y′
(
I − XbX−b

)
y
)

= cb1σ
2
ϵ + cb2σ

2
αβ + cb3σ

2
β + cb4σ

2
α.

First, the coefficient of σ2
ϵ , cb1 is obtained using the model matrix I − XX−of (3.1) denoted by X f .

That is,

Tr
(
X
′

f

(
I − XbX−b

)
X f

)
= Tr
(
(I − XX−)

(
I − XbX−b

)
(I − XX−)

)
= Tr(I − XX−).

Second, the coefficient of σ2
αβ, cb2 is obtained using the model matrix (I − XbX−b )X3 of (3.3) denoted

by Xαβ. This turns out to be

Tr
(
X
′

αβ

(
I − XbX−b

)
Xαβ
)
= Tr
(
X
′

3

(
I − XbX−b

) (
I − XbX−b

) (
I − XbX−b

)
X3

)
= Tr
(
X
′

3

(
I − XbX−b

)
X3

)
.

Third, the coefficient of σ2
β, cb3 is obtained using the model matrix (I − XbX−b )X2 of (3.4) denoted by

Xβ. That is,

Tr
(
X
′

β

(
I − XbX−b

)
Xβ
)
= Tr
(
X
′

2(I − XaX−a )
(
I − XbX−b

) (
I − XaX−a

)
X2

)
= 0,

where two matrices Xβ and I − XbX−b are orthogonal. Lastly, the coefficient of σ2
α, cb4 is obtained

using the model matrix (I − X jX−j )X1 of (3.5) denoted by Xα. That is,

Tr
(
X
′

α

(
I − XbX−b

)
Xα
)
= Tr
(
X
′

1
(
I − XaX−a

) (
I − XbX−b

) (
I − XaX−a

)
X1

)
= 0.

Hence, the expectation of S S b is represented by

E
(
r′brb

)
= Tr
(
I − XX−

)
σ2
ϵ + Tr

(
X
′

3

(
I − XbX−b

)
X3

)
σ2
αβ

= cb1σ
2
ϵ + cb2σ

2
αβ.
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Since ra defined on (3.4) has three random effects, E(S S a) has the information about the coefficients
of σ2

β, σ
2
αβ, and σ2

ϵ . E(S S a) is

E
(
r′ara
)
= E
(
y′
(
I − XaX−a

)
y
)

= ca1σ
2
ϵ + ca2σ

2
αβ + ca3σ

2
β + ca4σ

2
α. (4.2)

First, the coefficient of σ2
ϵ , ca1 is obtained using the model matrix of (3.1) denoted byX f . That is,

Tr
(
X
′

f
(
I − XaX−a

)
X f

)
= Tr
(
(I − XX−)(I − XaX−a )(I − XX−)

)
= Tr(I − XX−).

Second, the coefficient of σ2
αβ, ca2 is obtained using the model matrix of (3.3) denoted by Xαβ. That

is,

Tr
(
X
′

αβ

(
I − XaX−a

)
Xαβ
)
= Tr
(
X
′

3

(
I − XbX−b

) (
I − XaX−a

) (
I − XbX−b

)
X3

)
= Tr
(
X
′

3

(
I − XbX−b

)
X3

)
.

Third, the coefficient of σ2
β, ca3 is found using the model matrix of (3.4) denoted by Xβ. That is,

Tr
(
X
′

β

(
I − XaX−a

)
Xβ
)
= Tr
(
X
′

2
(
I − XaX−a

) (
I − XaX−a

) (
I − XaX−a

)
X2

)
= Tr
(
X
′

2
(
I − XaX−a

)
X2

)
,

where two matrices Xβ and I − XbX−b are orthogonal. Lastly, the coefficient of σ2
α, ca4 is obtained

using the model matrix of (3.5) denoted byXα. That is,

Tr
(
X
′

α

(
I − XaX−a

)
Xα
)
= Tr
(
X
′

1
(
I − XaX−a

) (
I − XaX−a

) (
I − XaX−a

)
X1

)
= Tr
(
X
′

1
(
I − XaX−a

)
X1

)
= 0.

Hence, E(S S a) is represented by

E
(
r′ara
)
= Tr
(
I − XX−

)
σ2
ϵ + Tr

(
X
′

3

(
I − XbX−b

)
X3

)
σ2
αβ + Tr

(
X
′

2
(
I − XaX−a

)
X2

)
σ2
β

= ca1σ
2
ϵ + ca2σ

2
αβ + ca3σ

2
β.

Finally, E(S S j) is

E
(
r′jr j

)
= E
(
y′
(
I − X

′

jX
−
j

)
y
)

= c j1σ
2
ϵ + c j2σ

2
αβ + c j3σ

2
β + c j4σ

2
α.

The coefficients of variance components of (4.2) can be obtained similarly as before with the model
matrices X f , Xαβ, Xβ, and Xα. With the X f , the coefficient of σ2

ϵ , c j1 is given as

Tr
(
X
′

f

(
I − X jX−j

)
X f

)
= Tr
((

I − XX−
) (

I − X jX−j
) (

I − XX−
))

= Tr
(
I − XX−

)
.
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With the Xαβ, the coefficient of σ2
αβ, c j2 is given as

Tr
(
X
′

αβ

(
I − X jX−j

)
Xαβ
)
= Tr
(
X
′

3

(
I − XbX−b

) (
I − X jX−j

) (
I − XbX−b

)
X3

)
= Tr
(
X
′

3

(
I − XbX−b

)
X3

)
.

With the Xβ, the coefficient of σ2
β, ca3 is given as

Tr
(
X
′

β

(
I − X jX−j

)
Xβ
)
= Tr
(
X
′

2
(
I − XaX−a

) (
I − X jX−j

) (
I − XaX−a

)
X2

)
= Tr
(
X
′

2
(
I − XaX−a

)
X2

)
.

With the Xα, the coefficient of σ2
α, c j4 is given as

Tr
(
X
′

α

(
I − X jX−j

)
Xα
)
= Tr
(
X
′

1
(
I − XaX−a

) (
I − X jX−j

) (
I − XaX−a

)
X1

)
= Tr
(
X
′

1
(
I − XaX−a

)
X1

)
.

Hence, the expectation of S S a is represented by

E
(
r′jr j

)
= Tr
(
I − XX−

)
σ2
ϵ + Tr

(
X
′

3

(
I − XbX−b

)
X3

)
σ2
αβ

+ Tr
(
X
′

2
(
I − XaX−a

)
X2

)
σ2
β + Tr

(
X
′

1
(
I − XaX−a

)
X1

)
σ2
α

= c j1σ
2
ϵ + c j2σ

2
αβ + c j3σ

2
β + c j4σ

2
α. (4.3)

The equations solving for variance components are

S S e = ce1σ̂
2
ϵ + ce2σ̂

2
αβ + ce3σ̂

2
β + ce3σ̂

2
α,

S S b = cb1σ̂
2
ϵ + cb2σ̂

2
αβ + cb3σ̂

2
β + cb4σ̂

2
α,

S S a = ca1σ̂
2
ϵ + ca2σ̂

2
αβ + ca3σ̂

2
β + ca4σ̂

2
α,

S S j = c j1σ̂
2
ϵ + c j2σ̂

2
αβ + c j3σ̂

2
β + c j4σ̂

2
α.

The solutions from a system of linear equations in (σ2
i )’s (4.3) are given as nonnegative estimates

of variance components for the assumed model (2.1).

5. Example

In this section the data presented in Section 2 is used as an example of getting nonnegative estimates
for four variance components. From the model fitting procedure discussed previously we get S S e =

30.66667, S S b = 139.81176, S S a = 154.57143, and S S j = 155.2143. The expectations of these are
given as

E(S S e) = 8σ2
ϵ

E(S S b) = 8σ2
ϵ + 4.52σ2

αβ

E(S S a) = 12σ2
ϵ + 4.52σ2

αβ + 9.14σ2
β

E(S S j) = 8σ2
ϵ + 4.52σ2

αβ + 9.14σ2
β + 7σ2

α.
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By equating the sums of squares to their respective expected sums of squares, we get

σ̂2
ϵ = 3.8333, σ̂2

αβ = 24.1597, σ̂2
β = 1.6143, σ̂2

α = 0.0918.

Nonnegative estimates are obtained by the projection method. These values are compared with the
Type I estimates from Milliken and Johnson (1984) which are

σ̂2
ϵ = 3.8333, σ̂2

αβ = 22.4620, σ̂2
β = −10.5877, σ̂2

α = −8.0329.

6. Conclusion

This paper suggests a method to estimate variance components in a two-way random model. The
method is based on the concept of an orthogonal projection of an observation vector in n-dimensional
space onto the vector subspace of itself. Orthogonal projections are used for the estimation of variance
components associated with the random effects of the assumed model. There are many methods that
are available in the literature; however, most still have the problem of negative estimates of variance
components when it happens. To avoid this, it is necessary to build proper models to obtain right
projections onto vector subspaces that are orthogonal to each other. Therefore, it is important to
identify the residual random vector in each step and then construct a residual random model for it.

The corresponding orthogonal projection is obtained by projecting the residual random vector
onto the vector subspace spanned by the residual model matrix of the residual random model. The
observation vector can be denoted as the sum of projections since projections are defined on their own
vector subspaces that are orthogonal.

Hartley’s synthesis was used for the calculations of the expectations of sums of squares expressed
as sums of squared distances of projections that are orthogonal. Each projection is defined on its own
vector subspace orthogonal to others; therefore, the expectation on the sums of squares for the residual
vector defined on each stage has nonzero coefficients for variance components only if it has related
random effects.

Variance as a measure of variation of data can never be a negative value from its definition; Nev-
ertheless, we accredit the negative estimate as evidence that the true value of the component is zero as
is often. However, the projection method shows that the estimates of variance components are always
nonnegative.
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