DOI QR코드

DOI QR Code

Design of a CubeSat test platform for the verification of small electric propulsion systems

  • Corpino, Sabrina (Department of Mechanical and Aerospace Engineering (DIMEAS) Politecnico di Torino) ;
  • Stesina, Fabrizio (Department of Mechanical and Aerospace Engineering (DIMEAS) Politecnico di Torino) ;
  • Saccoccia, Giorgio (European Space Agency (ESA)) ;
  • Calvi, Daniele (Department of Mechanical and Aerospace Engineering (DIMEAS) Politecnico di Torino)
  • Received : 2019.03.28
  • Accepted : 2019.05.30
  • Published : 2019.09.25

Abstract

Small satellites represent an emerging opportunity to realize a wide range of space missions at lower cost and faster delivery, compared to traditional spacecraft. However, small platforms, such as CubeSats, shall increase their actual capabilities. Miniaturized electric propulsion systems can provide the satellite with the key capability of moving in space. The level of readiness of miniaturized electric propulsion systems is low although many concepts have been developed. The present research intends to build a flexible test platform for the assessment of selected small propulsion systems in relevant environment at laboratory level. Main goal of the research is to analyze the mechanical, electrical, magnetic, and chemical interactions of propulsion systems with the modern CubeSat-technology and to assess the performance of the integrated platform. The test platform is a 6U CubeSat hosting electric propulsion systems, providing mechanical, electrical and data interfaces, able to handle a variety of electric propulsion systems, thanks to the ability to regulate and distribute electric power, to exchange data according to several protocols, and to provide different mechanical layouts. The test platform is ready to start the first verification campaign. The paper describes the detailed design of the platform and the main results of the AIV activities.

Keywords

References

  1. Athirah, N., Afendi, M., Hafizan, K., Amin, N.A.M. and Majid, M.S. (2014), "Stress and thermal analysis of CubeSat structure", Appl. Mech. Mater., 554, 426-430. https://doi.org/10.4028/www.scientific.net/AMM.554.426.
  2. Babuscia, A., Cheung, K., Divsalar, D. and Lee, C. (2015), "Development of cooperative communication techniques for a network of small satellites and CubeSats in Deep Space", Acta Astronaut., 115, 349-355. https://doi.org/10.1016/j.actaastro.2015.06.001.
  3. Bowen, J., Villa, M. and Williams, A. (2015), "CubeSat based Rendezvous, Proximity Operations, and Docking in the CPOD Mission", Proceedings of theAIAA/USU Conference on Small Satellites, Logan, Utah, U.S.A., August.
  4. Bundesmann, C., Eichhorn, C., Scholze, F., Spemann, D., Neumann, H., Scortecci, F., Leiter, H.J., Holste, K., Klar, P.J., Built, A., Dannenmayer, K. and Golzalez del Amo, J. (2017), "Advanced electric propulsion diagnostic tools at IOM", Proc. Eng., 185, 1-88. https://doi.org/10.1016/j.proeng.2017.03.283.
  5. Busso, A., Mascarello, M., Corpino, S., Stesina, S. and Mozzillo, R. (2016), "The communication module on-board E-ST@R-II CubeSat", Proceedings of the 7th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications, Noordwijk, The Netherlands, September.
  6. Conigliaro, C., Calvi, D., Franchi, L., Stesina, F. and Corpino, S. (2018), "Design and analysis of an innovative cubesat thermal control system for biological experiment in lunar environment", Proceedings of the 69th International Astronautical Congress, Bremen, Germany, October.
  7. Franchi, L., Feruglio, L., Corpino, S. and Mozzillo, R. (2018), "Model predictive and reallocation problem for CubeSat fault recovery and attitude control", Mech. Syst. Signal. Proc., 98, 1034-1055. https://doi.org/10.1016/j.ymssp.2017.05.039.
  8. Hand, E. (2017), "Cubesat networks hasten shift to commercial weather data", Science, 357(6347), 118-119. https://doi.org/10.1126/science.357.6347.118.
  9. Klesh, J. and Krajewski, J. (2015), "MarCO: CubeSats to Mars in 2016", Proceedings of the Small Satellite Conference, Logan, Utah, U.S.A., August.
  10. Krejci, D., Reissner, A., Seifert, B., Jelem, D., Horbe, T., Plesescu, F., Friedhoff, P. and Lai, S. (2018), "Demonstration of the IFM nano-FEEP thruster in Low Earth Orbit", Proceedings of the 4S Symposium, Sorrento (Naples), Italy, May.
  11. Lascombes P., Henri D. (2018), "Electric propulsion for small satellites orbit control and deorbiting: The example of a Hall effect thruster", Proceedings of Space Ops Conference, Marseille, France, May.
  12. Lemmer K. (2017), "Propulsion for CubeSats", Acta Astronaut., 134, 231-243 https://doi.org/10.1016/j.actaastro.2017.01.048
  13. Levchenko, I., Bazaka, K., Ding, Y., Raitses, Y., Mazouffre, S., Henning, T., Klar, P.J., Shinohara, S., Schein, J., Garrigues, L., Kim, M., Lev, D., Taccogna, F., Boswell, R.W., Charles, C., Koizumi, H., Shen, Y., Scharlemann, C., Keidar, M. and Xu, S. (2018), "Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers", Appl. Phys., 5(1), 011104
  14. Manente, M., Trezzolani, F., Magarotto, M., Fantino, E., Selmo, A., Bellomo, N., Pavarin, D. (2019). "Regulus: a propulsion platform to boost small satellite missions". Acta Astronautica, 157, 241-249. https://doi.org/10.1016/j.actaastro.2018.12.022
  15. Modenini, D., Zannoni, M., Lasagni Manghi, R. and Tortora, P. (2018), "An analytical approach to autonomous optical navigation for a CubeSat mission to a binary asteroid system", Adv. Astronaut. Sci., 163, 139-149.
  16. Montag, C., Starlinger, V., Herdrich, G. and Schonherr, T. (2018), "A high precision impulse bit pendulum for a hardware-in-the-loop testbed to characterize the pulsed plasma thruster PETRUS 2.0", Proceedings of the 7th Russian-German Conference on Electric Propulsion, October.
  17. Montag, C., Herdrich, G. and Schonherr, T. (2017), "Modifications and experimental analysis towards an update of the pulsed plasma thruster PETRUS", Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, October.
  18. Mozzillo, R., Obiols Rabasa, G., Corpino, S. and Nichele, F. (2015), "Est@r-I experience: Valuable knowledge for improving the est@r-II design", Acta Astronautica, 121, 13-22. https://doi.org/10.1016/j.actaastro.2015.12.027.
  19. Mueller J., Hofer R., Parker M. and Ziemer J. (2010), "Survey of propulsion options for Cubesats", Proceedings of the 57th JANNAF Propulsion Meeting, Colorado Springs, U.S.A., May.
  20. Nguyen T.H., Tsafnat N., Cetin E., Osborne B. and Dixon T.F. (2015), "Low-Earth orbit satellite constellation for ADS-B based in-flight aircraft tracking", Adv. Aircraft Spacecraft Sci., 2(1), 95-108. http://dx.doi.org/10.12989/aas.2015.2.1.095.
  21. Obiols Rabasa, G., Corpino, S., Mozzillo, R. and Stesina, F. (2015), "Lessons learned of a systematic approach for the E-ST@R-II CUBESAT environmental test campaign", Proceedings of the 66th International Astronautical Congress, Jerusalem, Israel, October.
  22. Parker, K.I. (2016), "State-of-the-Art for small satellite propulsion systems", Proceedings of the 4th 2016 biennial Aerospace Systems Conference of the National Society of Black Engineers (NSBE), Arlington, Virginia, U.S.A., August.
  23. Perez, F., Modenini, D., Vazquez, A., Aguado, F., Tubio, R., Dolgos, G., Tortora, P., Gonzalez, A., Lasagni Manghi, R., Zannoni, M., Nazeeruddin, A., Melozzi, M. and Carnelli, I. (2018), "DustCube, a nanosatellite mission to binary asteroid 65803 Didymos as part of the ESA AIM mission", Adv. Sp. Res., 62(12), 3335-3356. https://doi.org/10.1016/j.asr.2018.06.019.
  24. Pittella, E., Pisa, S., Pontani, M., Nascetti, A., D'Atanasio, P., Zambotti, A. and Hadi, H. (2016), "Reconfigurable S-band patch antenna system for Cubesat satellites", IEEE Aerosp. Electron. Syst. Mag., 31(5), 6-13. https://doi.org/10.1109/MAES.2016.150153.
  25. Puig Suari, J. (2008), "The CubeSat: The picosatellite standard for research and education", Proceedings of the Space Conference 2008, San Diego, California, U.S.A., September.
  26. Rafalskyi, D. and Aanesland, A. (2017), "A neutralizer-free gridded ion thruster embedded into a 1U Cubesat module", Proceedings of 35th International Electric Propulsion Conference, Atlanta, Georgia, U.S.A., October.
  27. Siddiqui, M.U., Cretel, C., Synowiec, J., Hsu, A.G., Young, J.A. and Spektork, R. (2017), "First performance measurements of the phase four RF thruster", Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, U.S.A., October.
  28. Staehle, R.L., Anderson, B., Betts, B., Blaney, D., Chow, C., Friedman, L., Hemmati, H., Jones, D., Klesh, A. and Liewer, P. (2012), "Interplanetary CubeSats: Opening the solar system to a broad community at lower cost", J. Small Satellites, 2(1), 161-186
  29. Stesina, F., Corpino, S. and Feruglio, L. (2017), "An in-the-loop simulator for the verification of small space platforms", Int. Rev. Aersosp. Eng., 10(2), 50-60.
  30. Trezzolani, F., Manente, M., Toson, E., Selmo, A., Magarotto, M., Moretto, D., Bos, F., De Carlo, P., Melazzi, D. and Pavarin, D. (2017), "Development and testing of a miniature helicon plasma thruster", Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, U.S.A., October.
  31. Tummala, A. and Dutta, A. (2017), "An overview of cube-satellite propulsion technologies and trends", Aerospace, 4(4), 58-67. https://doi.org/10.3390/aerospace4040058.
  32. Viscio, M.A., Viola, N., Corpino, S., Stesina, F., Circi, C., Fineschi, S. and Fumenti, F. (2013), "Interplanetary cubesats mission to earth-sun libration point for space weather evaluations", Proceedings of the 66th International Astronautical Congress, Beijing, China, September.
  33. Walker, R. and Liu, M. (2013), "Integration of electric propulsion systems within spacecraft. An overview", Proceedings of the 33rd International Electric Propulsion Conference, Washington D.C., U.S.A., October.

Cited by

  1. A Test Platform to Assess the Impact of Miniaturized Propulsion Systems vol.7, pp.11, 2019, https://doi.org/10.3390/aerospace7110163