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Abstract 
Signature-based intrusion systems use intrusion detection rules for detecting intrusion. However, writing 

intrusion detection rules is difficult and requires considerable knowledge of various fields. Attackers may 

modify previous attempts to escape intrusion detection rules. In this paper, we deal with the problem of 

detecting modified attacks based on previous intrusion detection rules. We show a simple method of 

reporting approximate occurrences of at least one of the network intrusion detection rules, based on 

q-grams and the longest increasing subsequences. Experimental results showed that our approach could 

detect modified attacks, modeled with edit operations.  
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I. INTRODUCTION 

Network security is a major issue. New malwares 

are emerging everywhere, and their economic cost 

is non-negligible. Also, cyberspace is considered 

as a future theater of war and network intrusion 

will be its weapon. For example, The United States 

Department of Defense considers the Internet both 

as threats and platform for attack [1].  

Hackers begin with finding vulnerabilities in 

operating systems and applications. Then such 

vulnerabilities are exploited. An intrusion detection 

system (IDS) reads incoming and outgoing packets. 

If they contain suspicious contents exploiting such 

vulnerabilities, they are blocked, or reported for 

further consideration.  

Once it was enough to check just headers of 

packets. By checking IP addresses and ports of 

source and destination, one could tell whether these 

packets are from dubious origins or targeting 

services with vulnerabilities. Well-known tools 

include ipchains [3] and iptables [4]. Nowadays

checking headers is not enough: with deep-packet 

inspection, contents in payloads are also checked. 

IDS will report warnings if they contain signatures, 

strings or regular expressions obtained from 

analysis of such attacks.  

We will focus on deep-packet inspection here. We 

need one or more signatures to detect one attack. 

Figure 1 shows a simple example of signatures. 

Fig. 1. An example of intrusion-detection rules 

Informally, rules in Figure 1 say that if there 

exists a substring which begins with clsid, followed 

by spaces (\s*), colon (\x3a), spaces, { (\x7b),

spaces, and either 8A674B4C-1F63 or 8A674B4D 

-1F63, it will report that there is an attack. From

this example we can see that those rules are not 

easy to read and to write.  

There is another approach: instead of checking 

incoming and outgoing network traffics against 

intrusion detection rules, the intrusion detection 

systems monitor system activity and learn what is 

normal and what is anomalous.  We call them as 

anomaly-based intrusion detection systems [4, 5]. 

Artificial intelligence techniques are applied in 

learning normal and anomalous states. If these 

states are correctly recognized, it will beat 
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signature-based systems as it can handle 

zero-day attacks and advanced persistent threats. 

However, so far as we know, signature-based 

systems are widely in use now: learning states is 

hard as there are many factors to be considered 

(network traffics, processes and threads, memory 

usage patterns, and so on). At this moment, 

signature-based intrusion detection systems are 

the de facto standard. 

The main drawback of signature-based intrusion 

detection system is that it can only detect attacks 

described in intrusion detection rules. There is no 

rule detecting a new attack targeting a vulnerability 

which has not been exploited yet. IDS is off-guard 

until someone has dissected the attack and writes a 

new rule. However, isolating the corrupted network 

packets, understanding the unknown attack, and 

writing signatures requires extensive knowledge 

and can be done by a few experts. 

There is an asymmetry between writing a new 

attack and protecting systems from it. Intrusion 

detection rules are freely available to system 

administrators and hackers too. From this 

information one can easily create a new attack by 

rewriting parts described in its detection rule. 

Statistics on the numbers of malwares support this 

assumption [6].  

There can be several approaches to handle this 

situation. One is to devise methods for finding 

approximate occurrences of signatures. The other 

is to devise methods for writing a new intrusion 

detection rules from network traffics. We will 

consider a mix of these two approaches.  

The main problem with automatically generated 

rules is that it is not easy to maintain these rules. 

Intrusion detection rules are hard to read and 

understand. Automatically generated rules are 

harder to read and understand, as we do not know 

why these rules were made. Therefore, it would be 

better if automatically generated rules are similar to 

preexisting ones and if it is hard to tell them apart. 

In our assumption, new attacks are just simple 

variation of old ones obtained by changing words in 

signatures. Then their signatures will be very close 

to those for old ones. Here we need a simpler 

method for finding approximate occurrences of 

regular expressions. From these occurrences, we 

can create a new intrusion detection rule for those 

variations.   

 

II. RELATED WORK 

 
Vulnerability analysis and network intrusion 

detection has been an important topic. Recent 

works covering these topics include [7, 8, 9].  

Examples of network intrusion detection systems 

include Snort [10], Bro [11], and Suricata [12]. 

Snort is the de facto standard of intrusion detection 

system: it means that other intrusion detection 

systems use similar settings and signatures. 

Currently most intrusion detection rules are written 

in the Snort format and are distributed.  

 Approximate matching on strings and regular 

expression has been a major topic in algorithm 

research. For simple strings, it can be done by a 

simple dynamic programming [13]. Approximate 

regular expression matching was first solved by 

Myers in [14], but the algorithm is complicated and 

impractical. Another algorithm in [15] is simpler, 

but still it is not practical.  

Approaches for automatic intrusion detection rules 
include [16, 17, 18, 19]. Details on how to extract 
rules from log data is not clearly presented.    
 

III. PROPOSED METHOD 

 
Here we will solve the problem based on 

techniques in string algorithms. Our key 

observation is that modified malwares are more or 

less the same, except that they are modified to 

escape intrusion detection rules. Also, we will 

assume that old signatures can still detect them 

partially: we can't find their occurrences as there is 

no perfect match with the current intrusion 

detection rules. 

Instead of solving approximate regular expression 

matching directly, we will make the problem 

simpler and easier to handle. One key idea is that 

we will consider regular expressions as simple 

strings. We will consider only solid characters, that 

is, skipping operators and related parts. We also 

consider their relative order. Then the regular 

expression is converted into a series of subpatterns. 

We label each of them with increasing numbers. For 

packets containing modified attacks, some 

subpatterns may not appear, but there remains 

matching subpatterns. Furthermore, their labels will 

form an increasing sequence. 

This idea can transform our problem into finding 

the longest increasing subsequence [20], defined 

as follows.  
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Definition 1. Given a sequence, a subsequence is 

the sequence obtained by deleting zero or more 

numbers. An increasing subsequence is a 

subsequence whose elements are in ascending 

order, and the longest increasing subsequence 

(LIS) is the one with the maximum length. For 

example, if there is a sequence 1, 5, 3, 4, and 7, its 

longest increasing subsequence is 1, 3, 4, and 7.  

 

Figure 2 shows how to compute the longest 

common subsequence S out of the input sequence X. 

The algorithm runs in O(N log N) time. 

 

 
Fig. 2. An algorithm for finding LIS in X 

 

Definition 2. A q-gram in text T is a substring of 

T whose length is q. For example, when T = 

ABCDEF and q = 3, we have four q-grams of T, 

ABC, BCD, CDE, and DEF. 

 

Before going any further, we discuss the relation 

between approximate pattern matching and the 

longest increasing subsequence. Now we analyze 

the effect of one edit operation. Consider the 

example in Definition 2 again.  

- If we insert a character G after C, we get 

ABCGDEF. The q-grams are ABC, BCG, CGD, 

GDE, and DEF. Note that three q-grams were 

affected (as the inserted character can be 

located one of q positions) but the first and 

the last ones were not affected. It tells that 

there was one insertion between ABC and DEF. 

- If we delete a character D, we get ABCEF. 

Then we have ABC, BCE, and CEF. Still we can 

see that ABC remains in T. 

- If we replace D with G, we get ABCGEF. Then 

we, have ABC, BCG, CGE, and GEF. Again, we can 

see that ABC remains in T. 

 

Our algorithm consists of several steps, 

summarized in Figure 3. We will assume that we 

know L, the maximum length of a substring in T 

matching the signature.  

 

 
Fig. 3. Outline of the proposed algorithm 

 

Step 1: Split the network stream into overlapping 

strings of length 2L. That is, if we represent the 

network stream as T, we will create strings T[0 : 

2L-1], T[L : 3L-1], T[2L : 4L-1], and so on. It is 

evident that any occurrence of the signature will be 

contained in one of these strings.   

Step 2: We pick one rule from the rule sets. Then 

create q-grams of the chosen rule. For example, if 

the rule is 8A674B4C and q = 4, then the q-grams 

are 8A67, A674, 674B, 74B4, and 4B4C. We will 

also assign them numbers between one and five in 

that order. That is, label(8A67)=1, label(A674)=2, 

label(674B)=3, label(74B4)=4, and 

label(4B4C)=5. 

Step 3: We will create q-grams from the network 

stream and check whether there are common 

q-grams found in Step 2. A naive approach will 

take O(qL) time, but it can be done in O(L) time 

using the technique in [18]. For each q-gram, we 
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check whether it is also contained in those of the 

chosen rule. If so, we represent it with its label 

obtained in the previous step. Otherwise, we 

represent it with zero. For example, assume that 

the network stream was 98A6754B4C. With q = 4, 

the q-grams are 98A6, 8A67, A675, 6754, 754B, and 

54B4. We can see that 8A67 and 54B4 are contained 

in the q-grams of the chosen rule and their labels 

were 1 and 5, respectively. Then the output is 0, 1, 

0, 0, 0, 5. Note that we create q-grams for words 

in the rule only: wildcards or special symbols are 

ignored. A complicated procedure can handle them, 

but we did not see a noticeable enhancement in our 

experiments, so we choose to ignore them. 

Step 4: Find the LIS in the sequence obtained in 

Step 3. Note that we will ignore zeros as it doesn't 

mean one match of a common q-gram between the 

rule and the stream. In our example, the longest 

increasing subsequence is 0, 1, 5. After removing 

the first zero, we obtain that 1, 5. It means that the 

network stream of length L contained a substring 

which begin with 8A67, followed by 54B4. As the 

length of the sequence is O(L), the time complexity 

is O(L log L). 

Step 5: Compute the similarity score. If there were 

k q-grams from the rule, and the length of the LIS 

is `l, the similarity score is `l/k. The reason why we 

divide l with k, that is, normalize the score is that a 

long rule can contain many q-grams and the chance 

of unintended matches is high. For each signature, 

we store its similarity score. 

Step 6: Repeat Steps 2~5 for each signature in the 

intrusion detection rules. Sort them by the 

similarity scores and report ones with highest 

scores. It is easy to show that the time complexity 

is O(mL log L), where m is the number of intrusion 

detection rules. 

 

IV. EXPERIMENTAL RESULTS 

 

We used the snort-snapshot-2983 rule sets for 

the experiment. There were 8,472 rules and 1,586 

distinct regular expressions were contained. The 

experiment was done on an iMac, running macOS 

Sierra 10.12.5. The scripts were written in Python 

3.4.1.   

The experiment is composed with 13 rounds, in 

which we randomly picked 200 intrusion detection 

rules, and created random packets containing the 

signature using Sniffles [22, 23]. It reads one 

intrusion detection rule in Snort format and then 

creates traffics in PCAP format [24]. To simulate 

the modified attacks, we randomly picked at most 

two positions in the rule and modified it with edit 

operations randomly chosen. Then we generated 

packets with the modified rules. The results were 

packets with at most two edit operations, insertions, 

deletions, and substitutions.  

Table 1 shows the summary of experimental 

results. Out of 200 modified rules, our algorithm 

was able to find the original intrusion detection rule 

even with the modified packets. We used q = 3 and 

q = 4, respectively.  

One may wonder why the original rule may not 

have the highest score. After a closer look, we 

found that one edit operation could make q 

q-grams mismatches, and another longer rule 

might have more matching q-grams and having 

higher score than the original one. We tried other 

scoring schemes, but with them sometimes we 

were not able to find the original rule within Top 10. 

Surely, our approach favors longer rules as they 

have more matching q-grams regardless of its 

meaning. We believe that with more experiments 

we can design a better scoring function. 

Larger q will make the algorithm run faster as it 

will make fewer q-grams, but it may miss the 

answer. In our experiment when q > 4, there were 

cases when the original one was not included in 

Top 10.   

   

Table 1. Experimental Results  

 q=3  q=4 

Round Within Top 
10 

Not within 
Top 10 

Within Top 
10 

Not within 
Top 10 

1 200 0 200 0 
2 200 0 200 0 
3 200 0 200 0 
4 200 0 200 0 
5 200 0 200 0 
6 200 0 200 0 
7 200 0 200 0 
8 200 0 200 0 
9 200 0 200 0 

10 200 0 200 0 
11 200 0 200 0 
12 200 0 200 0 
13 200 0 200 0 

 

V. CONCLUSION 

 

We showed that mining a new rule for a modified 

attack can be done easily with a combination of 

q-grams and LIS. It is based on well-known 
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techniques of string algorithm, which is simple and 

easy to understand and to implement. Also, it can 

be turned into a parallel one by assigning each 

processor with different packets.  

Experimental results show that our approach can 

detect the modified attacks with the original 

intrusion detection rules. From this information one 

can find clues to write a new intrusion detection 

rule.  

Future works include designing an efficient scoring 

function and another method of mining a new 

intrusion detection rule based on the current rules.   
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