DOI QR코드

DOI QR Code

An Integrated Modeling Approach for Predicting Potential Epidemics of Bacterial Blossom Blight in Kiwifruit under Climate Change

  • Kim, Kwang-Hyung (APEC Climate Center) ;
  • Koh, Young Jin (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University)
  • Received : 2019.05.15
  • Accepted : 2019.07.25
  • Published : 2019.10.01

Abstract

The increasing variation in climatic conditions under climate change directly influences plant-microbe interactions. To account for as many variables as possible that may play critical roles in such interactions, the use of an integrated modeling approach is necessary. Here, we report for the first time a local impact assessment and adaptation study of future epidemics of kiwifruit bacterial blossom blight (KBB) in Jeonnam province, Korea, using an integrated modeling approach. This study included a series of models that integrated both the phenological responses of kiwifruit and the epidemiological responses of KBB to climatic factors with a 1 km resolution, under the RCP8.5 climate change scenario. Our results indicate that the area suitable for kiwifruit cultivation in Jeonnam province will increase and that the flowering date of kiwifruit will occur increasingly earlier, mainly due to the warming climate. Future epidemics of KBB during the predicted flowering periods were estimated using the Pss-KBB Risk Model over the predicted suitable cultivation regions, and we found location-specific, periodic outbreaks of KBB in the province through 2100. Here, we further suggest a potential, scientifically-informed, long-term adaptation strategy using a cultivar of kiwifruit with a different maturity period to relieve the pressures of future KBB risk. Our results clearly show one of the possible options for a local impact assessment and adaptation study using multiple models in an integrated way.

Keywords

References

  1. Arneson, P. A. 2001. Plant disease epidemiology: temporal aspects. The Plant Health Instructor. URL https://www.apsnet.org/edcenter/disimpactmngmnt/topc/EpidemiologyTemporal/Pages/default.aspx [15 May 2019].
  2. Baek, H.-J., Lee, J., Lee, H.-S., Hyun, Y.-K., Cho, C., Kwon, W.-T., Marzin, C., Gan, S.-Y., Kim, M.-J., Choi, D.-H., Lee, J., Lee, J., Boo, K.-O., Kang, H.-S. and Byun, Y.-H. 2013. Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia Pac. J. Atmos. Sci. 49:603-618. https://doi.org/10.1007/s13143-013-0053-7
  3. Cesaraccio, C., Spano, D., Snyder, R. L. and Duce, P. 2004. Chilling and forcing model to predict bud-burst of crop and forest species. Agric. For. Meteorol. 126:1-13. https://doi.org/10.1016/j.agrformet.2004.03.002
  4. Cesaraccio, C., Spano, D., Snyder, R. L. and Duce, P. 2005. Corrigendum to "Chilling and forcing model to predict bud-burst of crop and forest species" [Agric. For. Meteorol. 126 (2004), 1-13]. Agric. For. Meteorol. 129:211. https://doi.org/10.1016/j.agrformet.2004.03.010
  5. Cho, J. 2013. Assessment of climate change impacts on agricultural reservoirs in consideration of uncertainty. APCC Clim. Cent. Annu. Rep. 5:51-136 (in Korean with English abstract).
  6. Datson, P., Nardozza, S., Manako, K., Herrick, J., Martinez-Sanchez, M., Curtis, C. and Montefiori, M. 2013. Monitoring the Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae. Acta Hortic. 1095:181-184. https://doi.org/10.17660/actahortic.2015.1095.22
  7. Everett, K. R. and Henshall, W. R. 1994. Epidemiology and population ecology of kiwifruit blossom blight. Plant Pathol. 43:824-830. https://doi.org/10.1111/j.1365-3059.1994.tb01627.x
  8. Everett, K. and Henshall, W. 2012. Bacterial blossom blight, KiwiTech Bulletin No. 78. Plant and Food Research Institute, Oakland, New Zealand. 4 pp.
  9. Fang, D., Hu, F. and Xie, L. 1999. Preliminary study on bacterial blossom blight of kiwifruit in Jianning County, Fujian province. J. Fujian Agric. Univ. Nat. Sci. 28:54-58.
  10. Francesca, S., Simona, G., Francesco Nicola, T., Andrea, R., Vittorio, R., Federico, S., Cynthia, R. and Maria Lodovica, G. 2006. Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Glob. Chang. Biol. 12:1299-1307. https://doi.org/10.1111/j.1365-2486.2006.01175.x
  11. Geerts, S., Raes, D., Garcia, M., Del Castillo, C. and Buytaert, W. 2006. Agro-climatic suitability mapping for crop production in the Bolivian Altiplano: a case study for quinoa. Agric. For. Meteorol. 139:399-412. https://doi.org/10.1016/j.agrformet.2006.08.018
  12. Holling, C. S. 1986. The resilience of terrestrial ecosystems; local surprise and global change. In: Sustainable development of the biosphere, eds. W. C. Clark and R. E. Munn, pp. 292-317. Cambridge University Press, Cambridge, UK.
  13. Jeong, Y., Chung, U. and Kim, K.-H. 2018. Predicting future frost damage risk of kiwifruit in Korea under climate change using an integrated modelling approach. Int. J. Climatol. 38:5354-5367. https://doi.org/10.1002/joc.5737
  14. Jung, J. E., Kwon, E. Y., Chung, U. and Yun, J. I. 2005. Predicting cherry flowering date using a plant phenology model. Korean J. Agric. For. Meteorol. 7:148-155 (in Korean with English abstract).
  15. Keith, D. A., Akçakaya, H. R., Thuiller, W., Midgley, G. F., Pearson, R. G., Phillips, S. J., Regan, H. M., Araújo, M. B. and Rebelo, T. G. 2008. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol. Lett. 4:560-563. https://doi.org/10.1098/rsbl.2008.0049
  16. Kim, J. U., Kim, M. K., Kim, S., Kim, Y. H., Han, M. S. and Lee, W. S. 2012a. High-resolution climate change scenarios in South Korea using PRIDE MODEL. In: Proceedings of the Spring Meeting of KMS 2012, ed. by Korean Meteorological Society, pp. 127-128. Korean Meteorological Society, Seoul, Korea (in Korean).
  17. Kim, K.-H. and Cho, J. 2016. Predicting potential epidemics of rice diseases in Korea using multi-model ensembles for assessment of climate change impacts with uncertainty information. Clim. Change 134:327-339. https://doi.org/10.1007/s10584-015-1503-2
  18. Kim, K.-H., Cho, J., Lee, Y. H. and Lee, W.-S. 2015a. Predicting potential epidemics of rice leaf blast and sheath blight in South Korea under the RCP 4.5 and RCP 8.5 climate change scenarios using a rice disease epidemiology model, EPIRICE. Agric. For. Meteorol. 203:191-207. https://doi.org/10.1016/j.agrformet.2015.01.011
  19. Kim, K.-H., Jeong, Y. M., Cho, Y.-S. and Chung, U. 2016. Preliminary result of uncertainty on variation of flowering date of kiwifruit: case study of kiwifruit growing area of Jeollanamdo. Korean J. Agric. For. Meteorol. 18:42-54 (in Korean). https://doi.org/10.5532/KJAFM.2016.18.1.42
  20. Kim, K.-H. and Koh, Y. J. 2015. Development of a Maryblytbased forecasting model for kiwifruit bacterial blossom blight. Res. Plant Dis. 21:67-73 (in Korean). https://doi.org/10.5423/RPD.2015.21.2.067
  21. Kim, K.-H., Koh, Y. J., Jung, U., Han, J., Jeong, Y. and Son, K. I. 2015b. Enhancing agricultural climate services for kiwifruit growers in Jeonnam province. Gwangju Regional Meteorological Administration, Gwangju, Korea. 202 pp. (in Korean).
  22. Kim, K.-H., Son, K. I. and Koh, Y. J., 2018. Adaptation of the New Zealand Psa Risk Model for forecasting kiwifruit bacterial canker in Korea. Plant Pathol. 67:1208-1219. https://doi.org/10.1111/ppa.12810
  23. Kim, M.-K., Han, M.-S., Jang, D.-H., Baek, S.-G., Lee, W.-S., Kim, Y.-H. and Kim, S. 2012b. Production technique of observation grid data of 1 km Resolution. J. Clim. Res. 7:55-68 (in Korean).
  24. KMA (Korea Meteorological Administration). 2015. Production of fine-scale climate change data over the Korean Peninsula using RCP scenarios. Korea Meteorological Administration, Seoul, Korea. 822 pp. (in Korean).
  25. Koh, Y. J. 1995. Economically important diseases of kiwifruit. Plant Dis. Agric. 1:3-13.
  26. Koh, Y. J., Lee, D. H., Shin, J. S. and Hur, J.-S. 2001. Chemical and cultural control of bacterial blossom blight of kiwifruit caused by Pseudomonas syringae in Korea. N. Z. J. Crop Hortic. Sci. 29:29-34. https://doi.org/10.1080/01140671.2001.9514157
  27. Krol, M. S. and Bronstert, A. 2007. Regional integrated modelling of climate change impacts on natural resources and resource usage in semi-arid Northeast Brazil. Environ. Model. Softw. 22:259-268. https://doi.org/10.1016/j.envsoft.2005.07.022
  28. Kwon, Y.-S., Kim, S.-O., Seo, H.-H., Moon, K.-H. and Yun, J. I. 2012. Geographical shift in blooming date of kiwifruits in Jeju Island by global warming. Korean J. Agric. For. Meteorol. 14:179-188 (in Korean). https://doi.org/10.5532/KJAFM.2012.14.4.179
  29. Lee, I.-H., Park, S.-H., Kang, H.-S. and Cho, C.-H. 2012. Regional climate projections using the HadGEM3-RA. In: 3rd International Conference on Earth System Modeling, Vol. 3ICESM-236-2, ed. by Max Planck Institute for Meteorology. Max Planck Institute for Meteorology, Hamburg, Germany.
  30. Lenoir J., Gegout J. C., Marquet P. A., de Ruffray, P. and Brisse, H. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768-1771. https://doi.org/10.1126/science.1156831
  31. Lightner, G. W. and Steiner, P. W. 1992. $Maryblyt^{TM}$: a computer model for predicting of fire blight disease in apples and pears. Comput. Electron. Agric. 7:249-260. https://doi.org/10.1016/S0168-1699(05)80023-7
  32. Lim, D. K. 2009. Phenological survey for the subtropical fruit trees. Jeonnam Agricultural Research & Extension Services, Naju, Korea. 14 pp. (in Korean).
  33. Mathukumalli, S. R., Dammu, M., Sengottaiyan, V., Ongolu, S., Biradar, A. K., Kondru, V. R., Karlapudi, S., Bellapukonda, M. K. R., Chitiprolua, R. R. A. and Cherukumalli, S. R. 2016. Prediction of Helicoverpa armigera Hubner on pigeonpea during future climate change periods using MarkSim multimodel data. Agric. For. Meteorol. 228-229:130-138. https://doi.org/10.1016/j.agrformet.2016.07.009
  34. Olivier, J. G. J., Schure, K. M. and Peters, J. A. H. W. 2017. Trends in global $CO_2$ and total greenhouse gas emissions: 2017 report. PBL Netherlands Environmental Assessment Agency, The Hague. 69 pp.
  35. Ouma, P. O., Odera, P. A. and Mukundi, J. B. 2016. Spatial modelling of weather variables for plant disease applications in Mwea Region. J. Geosci. Environ. Prot. 4:127-136.
  36. Pennycook, S. R. and Triggs, C. M. 1991. Bacterial blossom blight of kiwifruit: a 5-year survey. Acta Hortic. 297:559-566. https://doi.org/10.17660/actahortic.1992.297.73
  37. Rahmstorf, S., Cazenave, A., Church, J. A., Hansen, J. E., Keeling, R. F., Parker, D. E. and Somerville, R. C. J. 2007. Recent climate observations compared to projections. Science 316:709. https://doi.org/10.1126/science.1136843
  38. R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org [15 May 2019].
  39. Reglinski, T., Vanneste, J., Wurms, K., Gould, E., Spinelli, F. and Rikkerink, E. 2013. Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae. Front. Plant Sci. 4:24. https://doi.org/10.3389/fpls.2013.00024
  40. Roberts, D. 2008. Thinking globally, acting locally: institutionalizing climate change at the local government level in Durban, South Africa. Environ. Urban. 20:521-537. https://doi.org/10.1177/0956247808096126
  41. Shin, J. S. 2004. Ecology and eco-friendly control of blossom blight of kiwifruits. Ph.D. thesis. Sunchon National University, Suncheon, Korea. 138 pp (in Korean).
  42. Shin, J.-S., Park, J.-K., Kim, G.-H., Jung, J.-S., Hur, J.-S. and Koh, Y.-J. 2004. Optimum spray program of preventive bactericides for the control of bacterial blossom blight of kiwifruit. Res. Plant Dis. 10:297-303 (in Korean). https://doi.org/10.5423/RPD.2004.10.4.297
  43. Tachibana, Y. 1988. Occurrence of kiwifruit bacterial blossom rot and its control. Plant Quar. 42:182-186.
  44. Tuck, G., Glendining, M. J., Smith, P., House, J. I. and Wattenbach, M. 2006. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenergy 30:183-197. https://doi.org/10.1016/j.biombioe.2005.11.019
  45. Wilbanks, T. J. and Kates, R. W. 1999. Global change in local places: how scale matters. Clim. Change 43:601-628. https://doi.org/10.1023/A:1005418924748
  46. Wilby, R. L., Whitehead, P. G., Wade, A. J., Butterfield, D., Davis, R. J. and Watts, G. 2006. Integrated modeling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK. J. Hydrol. 330:204-220. https://doi.org/10.1016/j.jhydrol.2006.04.033
  47. Young, J. M. 1984. Little light at the end of the bud rot tunnel. South. Hortic. 13:12-14.
  48. Yun, J. I. 2006. Climate change impact on the flowering season of Japanese cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100. Korean J. Agric. For. Meteorol. 8:68-76 (in Korean).