DOI QR코드

DOI QR Code

Survival Factor Gene FgSvf1 Is Required for Normal Growth and Stress Resistance in Fusarium graminearum

  • Li, Taiying (Department of Applied Biology, Dong-A University) ;
  • Jung, Boknam (Department of Applied Biology, Dong-A University) ;
  • Park, Sook-Young (Department of Plant Medicine, Sunchon National University) ;
  • Lee, Jungkwan (Department of Applied Biology, Dong-A University)
  • 투고 : 2019.03.28
  • 심사 : 2019.05.30
  • 발행 : 2019.10.01

초록

Survival factor 1 (Svf1) is a protein involved in cell survival pathways. In Saccharomyces cerevisiae, Svf1 is required for the diauxic growth shift and survival under stress conditions. In this study, we characterized the role of FgSvf1, the Svf1 homolog in the homothallic ascomycete fungus Fusarium graminearum. In the FgSvf1 deletion mutant, conidial germination was delayed, vegetative growth was reduced, and pathogenicity was completely abolished. Although the FgSvf1 deletion mutant produced perithecia, the normal maturation of ascospore was dismissed in deletion mutant. The FgSvf1 deletion mutant also showed reduced resistance to osmotic, fungicide, and cold stress and reduced sensitivity to oxidative stress when compared to the wild-type strain. In addition, we showed that FgSvf1 affects glycolysis, which results in the abnormal vegetative growth in the FgSvf1 deletion mutant. Further, intracellular reactive oxygen species (ROS) accumulated in the FgSvf1 deletion mutant, and this accumulated ROS might be related to the reduced sensitivity to oxidative stress and the reduced resistance to cold stress and fungicide stress. Overall, understanding the role of FgSvf1 in F. graminearum provides a new target to control F. graminearum infections in fields.

키워드

참고문헌

  1. Aguirre, J., Rios-Momberg, M., Hewitt, D. and Hansberg, W. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13:111-118. https://doi.org/10.1016/j.tim.2005.01.007
  2. Bowden, R. L. and Leslie, J. F. 1999. Sexual recombination in Gibberella zeae. Phytopathology 89:182-188. https://doi.org/10.1094/PHYTO.1999.89.2.182
  3. Brace, J. L., VanderWeele, D. J. and Rudin, C. M. 2005. Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae. Yeast 22:641-652. https://doi.org/10.1002/yea.1235
  4. Cai, L., Sutter, B. M., Li, B. and Tu, B. P. 2011. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42:426-437. https://doi.org/10.1016/j.molcel.2011.05.004
  5. Catlett, N. L., Lee, B.-N., Yoder, O. C. and Turgeon, B. G. 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet. Rep. 50:9-11. https://doi.org/10.4148/1941-4765.1150
  6. Choi, Y., Jung, B., Li, T. and Lee, J. 2017. Identification of genes related to fungicide resistance in Fusarium fujikuroi. Mycobiology 45:101-104. https://doi.org/10.5941/MYCO.2017.45.2.101
  7. Darbre, P. D. 2015. Endocrine disruption and human health. Academic Press, Oxford, UK. 86 pp.
  8. Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I. and Hazan, R. 2006. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet. 2:e135. https://doi.org/10.1371/journal.pgen.0020135
  9. Gramaglia, D., Gentile, A., Battaglia, M., Ranzato, L., Petronilli, V., Fassetta, M., Bernardi, P. and Rasola, A. 2004. Apoptosis to necrosis switching downstream of apoptosome formation requires inhibition of both glycolysis and oxidative phosphorylation in a BCL-XL-and PKB/AKT-independent fashion. Cell Death Differ. 11:342-353. https://doi.org/10.1038/sj.cdd.4401326
  10. Green, D. R. and Levine, B. 2014. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157:65-75. https://doi.org/10.1016/j.cell.2014.02.049
  11. Gu, Q., Zhang, C., Yu, F., Yin, Y., Shim, W. B. and Ma, Z. 2015. Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum. Environ. Microbiol. 17:2661-2676. https://doi.org/10.1111/1462-2920.12522
  12. Gupta, V. and Bamezai, R. N. K. 2010. Human pyruvate kinase M2: a multifunctional protein. Protein Sci. 19:2031-2044. https://doi.org/10.1002/pro.505
  13. Hong, S.-Y., So, J., Lee, J., Min, K., Son, H., Park, C., Yun, S.-H. and Lee, Y.-W. 2010. Functional analyses of two syntaxinlike SNARE genes, GzSYN1 and GzSYN2, in the ascomycete Gibberella zeae. Fungal Genet. Biol. 47:364-372. https://doi.org/10.1016/j.fgb.2010.01.005
  14. Horwitz, B. A., Sharon, A., Lu, S.-W., Ritter, V., Sandrock, T. M., Yoder, O. C. and Turgeon, B. G. 1999. A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genet. Biol. 26:19-32. https://doi.org/10.1006/fgbi.1998.1094
  15. Izard, T., Aevarsson, A., Allen, M. D., Westphal, A. H., Perham, R. N., De Kok, A. and Hol, W. G. 1999. Principles of quasiequivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc. Natl. Acad Sci. U. S. A. 96:1240-1245. https://doi.org/10.1073/pnas.96.4.1240
  16. Jiang, J., Yun, Y., Fu, J., Shim, W.-B. and Ma, Z. 2011. Involvement of a putative response regulator FgRrg-1 in osmotic stress response, fungicide resistance and virulence in Fusarium graminearum. Mol. Plant Pathol. 12:425-436. https://doi.org/10.1111/j.1364-3703.2010.00684.x
  17. Jung, B., Park, J., Kim, N., Li, T., Kim, S., Bartley, L. E., Kim, J., Kim, I., Kang, Y., Yun, K., Choi, Y., Lee, H.-H., Ji, S., Lee, K. S., Kim, B. Y., Shon, J. C., Kim, W. C., Liu, K.-H., Yoon, D., Kim, S., Seo, Y.-S. and Lee, J. 2018. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9:31. https://doi.org/10.1038/s41467-017-02430-2
  18. Kaufmann, T., Schlipf, S., Sanz, J., Neubert, K., Stein, R. and Borner, C. 2003. Characterization of the signal that directs Bcl-xL, but not Bcl-2, to the mitochondrial outer membrane. J. Cell Biol. 160:53-64. https://doi.org/10.1083/jcb.200210084
  19. Kim, J.-E., Jin, J., Kim, H., Kim, J.-C., Yun, S.-H. and Lee, Y.-W. 2006. GIP2, a putative transcription factor that regulates the aurofusarin biosynthetic gene cluster in Gibberella zeae. Appl. Environ. Microbiol. 72:1645-1652. https://doi.org/10.1128/AEM.72.2.1645-1652.2006
  20. Lee, S., Son, H., Lee J., Min, K., Choi, G. J., Kim, J.-C. and Lee, Y.-W. 2011. Functional analyses of two acetyl coenzyme A synthetases in the ascomycete Gibberella zeae. Eukaryot. Cell 10:1043-1052. https://doi.org/10.1128/EC.05071-11
  21. Lee, S.-H., Han, Y.-K., Yun, S.-H. and Lee, Y.-W. 2009. Roles of the glyoxylate and methylcitrate cycles in sexual development and virulence in the cereal pathogen Gibberella zeae. Eukaryot. Cell 8:1155-1164. https://doi.org/10.1128/EC.00335-08
  22. Leplat, J., Friberg, H., Abid, M. and Steinberg, C. 2012. Survival of Fusarium graminearum, the causal agent of Fusarium head blight: a review. Agron. Sustain. Dev. 33:97-111. https://doi.org/10.1007/s13593-012-0098-5
  23. Leslie, J. F., Summerell, B. A. and Bullock, S. 2006. The Fusarium laboratory manual. Blackwell Publishing, Hoboken, NJ, USA. 288 pp.
  24. Min, K., Lee, J., Kim, J.-C., Kim, S. G., Kim, Y. H., Vogel, S., Trail, F. and Lee, Y.-W. 2010. A novel gene, ROA, is required for normal morphogenesis and discharge of ascospores in Gibberella zeae. Eukaryot. Cell 9:1495-1503. https://doi.org/10.1128/EC.00083-10
  25. Namiki, F., Matsunaga, M., Okuda, M., Inoue, I., Nishi, K., Fujita, Y. and Tsuge, T. 2001. Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant-Microbe Interact. 14:580-584. https://doi.org/10.1094/MPMI.2001.14.4.580
  26. Prasad, S., Gupta, S. C. and Tyagi, A. K. 2017. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 387:95-105. https://doi.org/10.1016/j.canlet.2016.03.042
  27. Qin, J., Wang, G., Jiang, C., Xu, J.-R. and Wang, C. 2015. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum. Sci. Rep. 5:8504. https://doi.org/10.1038/srep08504
  28. Ray, P. D., Huang, B.-W. and Tsuji, Y. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24:981-990. https://doi.org/10.1016/j.cellsig.2012.01.008
  29. Sakamoto, Y., Nakade, K. and Sato, T. 2009. Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body. Curr. Genet. 55:409-423. https://doi.org/10.1007/s00294-009-0255-9
  30. Simon, H.-U., Haj-Yehia, A. and Levi-Schaffer, F. 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415-418. https://doi.org/10.1023/A:1009616228304
  31. Son, H., Lee, J. and Lee, Y.-W. 2012. Mannitol induces the conversion of conidia to chlamydospore-like structures that confer enhanced tolerance to heat, drought, and UV in Gibberella zeae. Microbiol. Res. 167:608-615. https://doi.org/10.1016/j.micres.2012.04.001
  32. Son, H., Lee, J., Park, A. R. and Lee, Y.-W. 2011. ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet. Biol. 48:408-417. https://doi.org/10.1016/j.fgb.2011.01.002
  33. Su, H.-L., Chou, C.-C., Hung, D.-J., Lin, S.-H., Pao, I.-C., Lin, J.-H., Huang, F.-L., Dong, R.-X. and Lin, J.-J. 2009. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30:5979-5987. https://doi.org/10.1016/j.biomaterials.2009.07.030
  34. Turner, J. F., Tomlinson, J. D. and Caldwell, R. A. 1980. Effect of salts on the activity of carrot phosphofructokinase. Plant Physiol. 66:973-977. https://doi.org/10.1104/pp.66.5.973
  35. Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029-1033. https://doi.org/10.1126/science.1160809
  36. Vander Heiden, M. G., Chandel, N. S., Li, X. X., Schumacker, P. T., Colombini, M. and Thompson, C. B. 2000. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl. Acad. Sci. U. S. A. 97:4666-4671. https://doi.org/10.1073/pnas.090082297
  37. Vander Heiden, M. G., Choy, J. S., VanderWeele, D. J., Brace, J. L., Harris, M. H., Bauer, D. E., Prange, B., Kron, S. J., Thompson, C. B. and Rudin, C. M. 2002. Bcl-xL complements Saccharomyces cerevisiae genes that facilitate the switch from glycolytic to oxidative metabolism. J. Biol. Chem. 277:44870-44876. https://doi.org/10.1074/jbc.M204888200
  38. Vander Heiden, M. G., Plas, D. R., Rathmell, J. C., Fox, C. J., Harris, M. H. and Thompson, C. B. 2001. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell Biol. 21:5899-5912. https://doi.org/10.1128/MCB.21.17.5899-5912.2001
  39. Vander Heiden, M. G. and Thompson, C. B. 1999. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell Biol. 1:E209-E216. https://doi.org/10.1038/70237
  40. Wang, K., Yin, X.-M., Chao, D. T., Milliman, C. L. and Korsmeyer, S. J. 1996. BID: a novel BH3 domain-only death agonist. Genes Dev. 10:2859-2869. https://doi.org/10.1101/gad.10.22.2859
  41. Yang, Q.-S., Gao, J., He, W.-D., Dou, T.-X., Ding, L.-J., Wu, J.-H., Li, C.-Y., Peng, X.-X., Zhang, S. and Yi, G.-J. 2015. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics 16:446. https://doi.org/10.1186/s12864-015-1551-z
  42. Zhang, E., Brewer, J. M., Minor, W., Carreira, L. A. and Lebioda, L. 1997. Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 ${\AA}$ resolution. Biochemistry 36:12526-12534. https://doi.org/10.1021/bi9712450
  43. Zhang, X.-W., Jia, L.-J., Zhang, Y., Jiang, G., Li, X., Zhang, D. and Tang, W.-H. 2012. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. Plant Cell 24:5159-5176. https://doi.org/10.1105/tpc.112.105957