DOI QR코드

DOI QR Code

Dehydrocostus Lactone Suppresses the Expression of iNOS Induced by TLR Agonists

  • Kim, Su Yeon (Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University) ;
  • Heo, Sunghye (Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University) ;
  • Kim, Seung Han (Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University) ;
  • Kwon, Minji (Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University) ;
  • Park, Sin-Aye (Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University) ;
  • Youn, Hyung-Sun (Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University)
  • Received : 2019.07.04
  • Accepted : 2019.08.17
  • Published : 2019.09.30

Abstract

Toll-like receptors (TLRs) are one of the families of pattern recognition receptors (PRR) to recognize pathogen-associated molecular patterns (PAMPs). PAMPs stimulate TLRs to initiate specific immunoactivity. The activation of TLRs signaling leads to the expression of pro-inflammatory gene products such as cytokines and inducible nitric oxide synthase (iNOS). To evaluate the therapeutic potential of dehydrocostus lactone (DHL), which is a natural sesquiterpene lactone derived from various medicinal plants, iNOS expression induced by LPS (TLR4 agonist), MALP-2 (TLR2 and TLR6 agonist), or Poly[I:C] (TLR3 agonist) were examined. DHL suppressed the iNOS expression induced by LPS, MALP-2, or Poly[I:C]. DHL also inhibited nitrite production induced by LPS, MALP-2, or Poly[I:C]. These results suggest that DHL can modulate TLRs signaling pathways resulting in anti-inflammatory effect.

Keywords

References

  1. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004. 4: 499-511. https://doi.org/10.1038/nri1391
  2. Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell. 1985. 42: 791-798. https://doi.org/10.1016/0092-8674(85)90275-2
  3. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002. 277: 15028-15034. https://doi.org/10.1074/jbc.M200497200
  4. Butturini E, Cavalieri E, de Prati AC, Darra E, Rigo A, Shoji K, Murayama N, Yamazaki H, Watanabe Y, Suzuki H, et al. Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation. PLoS One. 2011. 6: e20174. https://doi.org/10.1371/journal.pone.0020174
  5. Chauhan SD, Seggara G, Vo PA, Macallister RJ, Hobbs AJ, Ahluwalia A. Protection against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice. FASEB J. 2003. 17: 773-775. https://doi.org/10.1096/fj.02-0668fje
  6. Cho JY, Baik KU, Jung JH, Park MH. In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur J Pharmacol. 2000. 398: 399-407. https://doi.org/10.1016/S0014-2999(00)00337-X
  7. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003. 4: 491-496. https://doi.org/10.1038/ni921
  8. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006. 113: 1708-1714. https://doi.org/10.1161/CIRCULATIONAHA.105.602532
  9. Gochman E, Mahajna J, Shenzer P, Dahan A, Blatt A, Elyakim R, Reznick AZ. The expression of iNOS and nitrotyrosine in colitis and colon cancer in humans. Acta Histochem. 2012. 114: 827-835. https://doi.org/10.1016/j.acthis.2012.02.004
  10. Hsu YL, Wu LY, Kuo PL. Dehydrocostuslactone, a medicinal plantderived sesquiterpene lactone, induces apoptosis coupled to endoplasmic reticulum stress in liver cancer cells. J Pharmacol Exp Ther. 2009. 329: 808-819. https://doi.org/10.1124/jpet.108.148395
  11. Hultmark D. Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem Biophys Res Commun. 1994. 199: 144-146. https://doi.org/10.1006/bbrc.1994.1206
  12. Hung JY, Hsu YL, Ni WC, Tsai YM, Yang CJ, Kuo PL, Huang MS. Oxidative and endoplasmic reticulum stress signaling are involved in dehydrocostuslactone-mediated apoptosis in human non-small cell lung cancer cells. Lung Cancer. 2010. 68: 355-365. https://doi.org/10.1016/j.lungcan.2009.07.017
  13. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010. 11: 373-384. https://doi.org/10.1038/ni.1863
  14. Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, Sukkurwala AQ, Menger L, Zitvogel L, Kroemer G. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev. 2011. 30: 61-69. https://doi.org/10.1007/s10555-011-9273-4
  15. Kim AY, Shim HJ, Kim SY, Heo S, Youn HS. Differential regulation of MyD88- and TRIF-dependent signaling pathways of Tolllike receptors by cardamonin. Int Immunopharmacol. 2018a. 64: 1-9. https://doi.org/10.1016/j.intimp.2018.08.018
  16. Kim AY, Shim HJ, Shin HM, Lee YJ, Nam H, Kim SY, Youn HS. Andrographolide suppresses TRIF-dependent signaling of tolllike receptors by targeting TBK1. Int Immunopharmacol. 2018b. 57: 172-180. https://doi.org/10.1016/j.intimp.2018.02.019
  17. Kim EJ, Hong JE, Lim SS, Kwon GT, Kim J, Kim JS, Lee KW, Park JH. The hexane extract of Saussurea lappa and its active principle, dehydrocostus lactone, inhibit prostate cancer cell migration. J Med Food. 2012. 15: 24-32. https://doi.org/10.1089/jmf.2011.1735
  18. Knowles RG. Nitric oxide synthases. Biochem Soc Trans. 1996. 24: 875-878. https://doi.org/10.1042/bst0240875
  19. Ko SG, Koh SH, Jun CY, Nam CG, Bae HS, Shin MK. Induction of apoptosis by Saussurea lappa and Pharbitis nil on AGS gastric cancer cells. Biol Pharm Bull. 2004. 27: 1604-1610. https://doi.org/10.1248/bpb.27.1604
  20. Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol. 2005. 15: 277-289. https://doi.org/10.1016/j.semcancer.2005.04.004
  21. Lim HJ, Lee HS, Ryu JH. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression by tussilagone from Farfarae flos in BV-2 microglial cells. Arch Pharm Res. 2008. 31: 645-652. https://doi.org/10.1007/s12272-001-1207-4
  22. Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, Zulli A. Inducible nitric oxide synthase: Good or bad? Biomed Pharmacother. 2017. 93: 370-375. https://doi.org/10.1016/j.biopha.2017.06.036
  23. Lowenstein CJ, Padalko E. iNOS (NOS2) at a glance. J Cell Sci. 2004. 117: 2865-2867. https://doi.org/10.1242/jcs.01166
  24. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001. 1: 135-145. https://doi.org/10.1038/35100529
  25. Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997. 388: 394-397. https://doi.org/10.1038/41131
  26. Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ, Husain M. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest. 2002. 109: 735-743. https://doi.org/10.1172/JCI0213265
  27. Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer. 2007. 121: 2357-2363. https://doi.org/10.1002/ijc.23161
  28. Pandey MM, Rastogi S, Rawat AK. Saussurea costus: botanical, chemical and pharmacological review of an ayurvedic medicinal plant. J Ethnopharmacol. 2007. 110: 379-390. https://doi.org/10.1016/j.jep.2006.12.033
  29. Pitchai D, Roy A, Banu S. In vitro and in silico evaluation of NFkappaB targeted costunolide action on estrogen receptornegative breast cancer cells--a comparison with normal breast cells. Phytother Res. 2014. 28: 1499-1505. https://doi.org/10.1002/ptr.5155
  30. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998. 282: 2085-2088. https://doi.org/10.1126/science.282.5396.2085
  31. Rasul A, Bao R, Malhi M, Zhao B, Tsuji I, Li J, Li X. Induction of apoptosis by costunolide in bladder cancer cells is mediated through ROS generation and mitochondrial dysfunction. Molec ules. 2013. 18: 1418-1433. https://doi.org/10.3390/molecules18021418
  32. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptorassociated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFNregulatory factor-3, in the Toll-like receptor signaling. J Immunol. 2003. 171: 4304-4310. https://doi.org/10.4049/jimmunol.171.8.4304
  33. Sun CM, Syu WJ, Don MJ, Lu JJ, Lee GH. Cytotoxic sesquiterpene lactones from the root of Saussurea lappa. J Nat Prod. 2003. 66: 1175-1180. https://doi.org/10.1021/np030147e
  34. Sun X, Kang H, Yao Y, Chen H, Sun L, An W, Jiang E, Wang S, Hu X. Dehydrocostus lactone suppressed the proliferation, migration, and invasion of colorectal carcinoma through the downregulation of eIF4E expression. Anticancer Drugs. 2015. 26: 641-648. https://doi.org/10.1097/CAD.0000000000000229
  35. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005. 17: 1-14. https://doi.org/10.1093/intimm/dxh186
  36. Vallance P. Nitric oxide: therapeutic opportunities. Fundam Clin Pharmacol. 2003. 17: 1-10. https://doi.org/10.1046/j.1472-8206.2003.00124.x
  37. Yoshikawa M, Hatakeyama S, Inoue Y, Yamahara J. Saussureamines A, B, C, D, and E, new anti-ulcer principles from Chinese Saussureae Radix. Chem Pharm Bull (Tokyo). 1993. 41: 214-216. https://doi.org/10.1248/cpb.41.214
  38. Youn HS, Lee JY, Saitoh SI, Miyake K, Hwang DH. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem Biophys Res Commun. 2006a. 350: 866-871. https://doi.org/10.1016/j.bbrc.2006.09.097
  39. Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem Pharmacol. 2006b. 72: 850-859. https://doi.org/10.1016/j.bcp.2006.06.021