DOI QR코드

DOI QR Code

노면 적응형 대퇴 의족개발을 위한 발목 관절 부하 가변형 하퇴 의족 적용에 대한 연구

The Study on Applying Ankle Joint Load Variable Lower-Knee Prosthesis to Development of Terrain-Adaptive Above-Knee Prosthesis

  • Eom, Su-Hong (Dept. of Electronics Engineering, Korea Polytechnic University) ;
  • Na, Sun-Jong (Dept. of Electronics Engineering, Korea Polytechnic University) ;
  • You, Jung-Hwun (Dept. of Electronics Engineering, Korea Polytechnic University) ;
  • Park, Se-Hoon (Korea Orthopedics & Rehabilitation Engineering Center) ;
  • Lee, Eung-Hyuk (Dept. of Electronics Engineering, Korea Polytechnic University)
  • 투고 : 2019.09.05
  • 심사 : 2019.09.24
  • 발행 : 2019.09.30

초록

본 연구에서는 지능형 대퇴 의족의 노면 적응 기술 구현시 보행 환경이 변화하는 구간 및 약 경사로 보행에서의 보행 불평형 문제를 해결하기 위한 방법으로 발목 관절 운동을 제어 가능한 하퇴 의족을 적용하였다. 제안한 태퇴 의족의 개발을 위해서는 보행의 단계 구분이 필수적이다. 이러한 보행의 입각기의 단계별 구분과 유각기의 판단을 위하여 대퇴의족의 슬관절 데이터와 관성센서 데이터를 바탕으로 의사 결정 나무 학습법과 랜덤포레스트 기법을 융합한 머신러닝 기술을 제안 및 적용하였다. 이러한 방법으로 발목의 운동 상태를 제어 하였으며 보행 평형이 문제가 해소 되는지를 butterfly diagram을 측정하여 평가 하였다.

This study is the method which is adapted to control ankle joint movement for resolving the problem of gait imbalance in intervals where gait environments are changed and slope walking, as applying terrain-adaptive technique to intelligent above-knee prosthesis. In this development of above-knee prosthesis, to classify the gait modes is essential. For distinguishing the stance phases and the swing phase depending on roads, a machine learning which combines decision tree and random forest from knee angle data and inertial sensor data, is proposed and adapted. By using this method, the ankle movement state of the prosthesis is controlled. This study verifies whether the problem is resolved through butterfly diagram.

키워드

참고문헌

  1. Ministry of Employment and Labor, 2018 Disabled Statistics, 2018.
  2. Korea Employment Agency for the Disabled, Panel Survey of Employment for the Disabled : Characteristics by Disability Type, 2017. http://kosis.kr/statHtml/statHtml.do?orgId=383&tblId=DT_383003_P009
  3. Alcocer, W., Vela, L., Blanco, A., Gonzalez, J., and Oliver, M., "Major Trends in the Development of Ankle Rehabilitation Devices," Int. J. DYNA, Vol.79, No.176, pp.45-55, 2012. ISSN 0012-7353.
  4. Quintero, D., Villarreal, D. J., & Gregg, R. D. "Preliminary experiments with a unified controller for a powered knee-ankle prosthetic leg across walking speeds," In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.5427-5433, 2016. DOI: 10.1109/IROS.2016.7759798
  5. Su, B. Y., Wang, J., Liu, S. Q., Sheng, M., Jiang, J., & Xiang, K. "A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.27, no5, pp.1032-1042, 2019. DOI: 10.1109/TNSRE.2019.2909585
  6. Spanias, J. A., Simon, A. M., Finucane, S. B., Perreault, E. J., & Hargrove, L. J. "Online adaptive neural control of a robotic lower limb prosthesis," Journal of neural engineering, vol.15, no.1, 2016. DOI: 10.1088/1741-2552/aa92a8
  7. Brantley, J. A., Luu, T. P., Nakagome, S., & Contreras-Vidal, J. L. "Prediction of lower-limb joint kinematics from surface EMG during overground locomotion," In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1705-1709, 2017. DOI: 10.1109/SMC.2017.8122861
  8. Afzal, T., Iqbal, K., White, G., & Wright, A. B. "A method for locomotion mode identification using muscle synergies," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.25, no.6, pp.608-617, 2017. DOI: 10.1109/TNSRE.2016.2585962
  9. Quintero, D., Villarreal, D. J., Lambert, D. J., Kapp, S., & Gregg, R. D. "Continuous-phase control of a powered knee-ankle prosthesis: Amputee experiments across speeds and inclines," IEEE Transactions on Robotics, vol.34, no.3, pp.686-701, 2018. DOI: 10.1109/TRO.2018.2794536
  10. Huang, H., Crouch, D. L., Liu, M., Sawicki, G. S., & Wang, D. "A cyber expert system for auto-tuning powered prosthesis impedance control parameters," Annals of biomedical engineering, vol.44, no.5, pp.1613-1624, 2016. DOI: 10.1007/s10439-015-1464-7
  11. Tao, W., Liu, T., Zheng, R., Feng, H. "Gait Analysis Using Wearable Sensors," Sensors 2012, vol.12, pp.2255-2283, 2012. DOI: 10.3390/s120202255
  12. Rajtukova, V. a, Michalikova, M., Bednarcikova, L., Balogova, A., Zivcak, J. "Biomechanics of Lower Limb Prostheses," Procedia Engineering, vol.96, pp.382-391, 2014. DOI: 10.1016/j.proeng.2014.12.107
  13. Maqbool, H. F., Husman, M. A. B., Awad, M. I., Abouhossein, A., Iqbal, N., & Dehghani-Sanij, A. A. "A real-time gait event detection for lower limb prosthesis control and evaluation," IEEE transactions on neural systems and rehabilitation engineering, vol.25, no.9, pp.1500-1509, 2016. DOI: 10.1109/TNSRE.2016.2636367
  14. Won ho Heo, Euntai Kim, Hyun Sub Park, and Jun-Young Jung, "A Gait Phase Classifier using a Recurrent Neural Network," Journal of Institute of Control, Robotics and Systems, vol.21, no.6, pp.518-523, 2015. DOI: 10.5302/J.ICROS.2015.15.9024
  15. Vasan, G., & Pilarski, P. M. "Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning," In 2017 International Conference on Rehabilitation Robotics (ICORR) pp. 1457-1464. 2017. DOI: 10.1109/ICORR.2017.8009453
  16. Huang, Q., Yang, D., Jiang, L., Zhang, H., Liu, H., & Kotani, K. "A novel unsupervised adaptive learning method for long-term electromyography (EMG) pattern recognition," Sensors 2017, vol.17, no.6, pp.1370, 2017. DOI: 10.3390/s17061370
  17. Wu, H., Huang, Q., Wang, D., & Gao, L. "A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals," Journal of Electromyography and Kinesiology, vol.42, pp.136-142, 2018. DOI: 10.1016/j.jelekin.2018.07.005
  18. Ekkachai, K., & Nilkhamhang, I. "Swing phase control of semi-active prosthetic knee using neural network predictive control with particle swarm optimization," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.24, no.11, pp.1169-1178, 2016. DOI: 10.1109/TNSRE.2016.2521686
  19. Liu, M., Wang, D., & Huang, H. H. "Development of an environment-aware locomotion mode recognition system for powered lower limb prostheses," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.24, no.4, pp.434-443, 2015. DOI: 10.1109/TNSRE.2015.2420539
  20. Wurdeman, S. R., Stevens, P. M., & Campbell, J. H. "Mobility Analysis of AmpuTees (MAAT 4): Classification tree analysis for probability of lower limb prosthesis user functional potential," Disability and Rehabilitation: Assistive Technology, pp.1-8, 2019. DOI: 10.1080/17483107.2018.1555290
  21. Genuer, R., Poggi, J. M., Tuleau-Malot, C., & Villa-Vialaneix, N, "Random forests for big data," Big Data Research, vol.9, pp.28-46, 2017. DOI: 10.1016/j.bdr.2017.07.003