DOI QR코드

DOI QR Code

Current-Voltage and Conductance Characteristics of Silicon-based Quantum Electron Device

실리콘 양자전자소자의 전류-전압 및 컨덕턴스 특성

  • Received : 2019.09.02
  • Accepted : 2019.09.23
  • Published : 2019.09.30

Abstract

The silicon-adsorbed oxygen(Si-O) superlattice grown by ultra high vacuum-chemical vapor deposition(UHV-CVD) was introduced as an epitaxial barrier for silicon quantum electron devices. The current-voltage (I-V) measurement results show the stable and good insulating behavior with high breakdown voltage. It is apparent that the Si-O superlattice can serve as an epitaxially grown insulating layer as possible replacement of silicon-on-insulator(SOI). This thick barrier may be useful as an epitaxial insulating gate for field effect transistors(FETs). The rationale is that it should be possible to fabricate a FET on top of another FET, moving one step closer to the ultimate goal of future silicon-based three-dimensional integrated circuit(3DIC).

초고진공 화학기상증착장치(UHV-CVD)에 의해 성장된 실리콘-흡착된 산소(Si-O) 초격자가 실리콘 양자전자소자를 위한 에피택셜 장벽으로 소개되었다. 전류-전압 측정 결과 높은 브레이크다운 전압을 갖는 매우 안정하고 양호한 절연특성을 나타내었다. 에피택셜 성장된 Si-O 초격자는 SOI(silicon on insulator)를 대체할 수 있는 절연층으로도 사용될 수 있음을 보여준다. 이 두꺼운 장벽은 전계효과트랜지스터(FET)의 절연 게이트로 유용하게 사용될 수 있어 FET 위에 또 다른 FET를 제작할 수 있으므로 미래 실리콘계 3차원 집적회로의 궁극적인 목표에 한층 더 다가갈 수 있는 가능성을 보여주는 것이다.

Keywords

References

  1. R. Tsu, "Silicon-based quantum wells," Nature (London), vol.364, p.19, 1993. DOI: 10.1038_364019a0 https://doi.org/10.1038/364019b0
  2. Raphael Tsu, Qui-Yi Ye, and Edward H. Nicollian "Resonant tunneling in microcrystalline silicon quantum box diode," Proc. SPIE 1361, Physical Concepts of Materials for Novel Optoelectronic Device Applications I: Materials Growth and Characterization, p.232. 1991. DOI: 10.1117/12.24358
  3. S. Y. Chou and A. E. Gordon, "Steps and spikes in current-voltage characteristics of oxide/microcrystallite silicon/oxide diodes," Appl. Phys. Lett., vol.60, no.15, p.1827, 1992. DOI: 10.1063/1.107177
  4. Y. J. Seo, J. C. Lofgrene and R. Tsu, "Transport through a nine period silicon/oxygen superlattice," Appl. Phys. Lett., vol.79, no.6, pp.788-790, 2001. DOI: 10.1063/1.1394162
  5. Y. J. Seo and R. Tsu, "Electrical and optical characteristics of multilayer nanocrystalline silicon/adsorbed oxygen superlattice," Jpn. J. Appl. Phys., vol.40, no.8, pp.4799-4801, 2001. DOI: 10.1143/JJAP.40.4799
  6. K. Dovidenko, J. C. Lofgren, F. de Freitas, Y. J. Seo, and R. Tsu, "Structure and optoelectronic properties of Si/O superlattice," Physica E, vol.16, pp.509-516, 2003. DOI: 10.1016/S1386-9477(02)00631-8
  7. Y. J. Seo and R. Tsu, "Epitaxially grown multilayer nanocrystalline Si-O structure for silicon-on-insulator applications," J. Korean Phys. Soc., vol.45, no.1, pp.120-123, 2004. DOI: 10.3938/jkps.45.120
  8. R. Tsu, A. Filios, J. C. Lofgrene, J. L. Ding, Q. Zhang, J. Morais, and C. G. Wang, "Quantum confinement in silicon," Electrochem Soc. Proc., vol.97-11, pp.341-350, 1997. ISBN: 1-56677-138-2.
  9. D. N. Chen and Y. C. Cheng, "A new model for dielectric-breakdown phenomenon in silicon dioxide films," J. Appl. Phys., vol.61, p.1592, 1987. DOI: 10.1063/1.338096
  10. L. Esaki and L. L. Chang, "New phenomenon in a semiconductor; Superlattice," Phys. Rev. Lett., vol.33, p.495, 1974. DOI: 10.1103/PhysRevLett.33.495
  11. U. Meirav, M. A. kastner, and S. J. Wind, "Single-electron charging and periodic conductance resonances in GaAs nanostructures," Phys. Rev. Lett., vol.65, p.771, 1990. DOI: 10.1103/PhysRevLett.65.771
  12. Y. Lin, A. D. van Rheenen, and S. Y. Chou, "Current fluctuations in double-barrier quantum well resonant tunneling diodes," Appl. Phys. Lett., vol.59, p.1105, 1991. DOI: 10.1063/1.106358
  13. R. Tsu, "Challenges in nanoelectronics," Nanotechnology, vol.12, no.4, pp.625-628, 2001. DOI: 10.1088/0957-4484/12/4/351