DOI QR코드

DOI QR Code

Thermal Flux Analysis for the Wearable NOx Gas Sensors

웨어러블 NOx 가스센서의 열유동 해석

  • Received : 2019.08.12
  • Accepted : 2019.09.16
  • Published : 2019.09.30

Abstract

In this study, the diffusion process and the thermal energy distribution gradient of the sensor were confirmed by using the finite element analysis program (COMSOL) of the mesh method to analyze the thermal diffusion in the wearable fabric (Nylon) + MWCNT gas sensor. To analyze the diffusion process of thermal energy, the structure of the gas sensor was modeled in a two dimension plane. The proposed modeling was presented with the characteristic value for the component of the sensor, and the gas sensor designed using the mesh finite element method (FEM) was proposed and analyzed by suggesting the one-way partial differential equation in the governing equation to know the degree of thermal energy diffusion and the thermal energy gradient. In addition, the temperature gradient 10[K/mm] of the anode-cathode electrode layer and the gas detection unit was investigated by suggesting the heat velocity transfer equation.

본 연구에서는 웨어러블 Fabric(Nylon) + MWCNT 가스센서 내부에서 열확산을 해석하기 위해서 요소해석 프로그램(comsol)을 이용하여 센서 내부에서의 열용량의 확산 과정과 열용량 분포 경도를 확인하였다. 열용량의 확산과정을 해석하기 위해서 가스센서의 구조체에 대하여 이차원으로 모델링을 진행하였으며, 제시된 모델링에 대해서 센서 구성 부분에 대한 특성값을 제시하여 메시 요소법(FEM)을 이용하여 설계된 웨어러블 가스센서에 대해서 열용량이 확산되는 정도와 열용량 경도를 구하기 위해서 지배방정식으로 1계 편미분방정식을 제안하여 해석하였으며, 열속도 전달식을 제안하여 전극층과 가스 검출부의 10[K/mm] 온도 경도를 구하였다.

Keywords

References

  1. H. S. Kim and K. U. Jang, "The Fabrication of FET-Type NOx Gas Sensing System Using the MWCNT," J. KIEEME, vol.26, no.4, pp.325-329, 2013. DOI: 10.4313/JKEM.2013.26.4.325
  2. H. S. Kim, S. H. Lee, and K. U. Jang, "Detection Characteristics for the Ultra Lean NOx Gas Concentration Using the MWCNT Gas Sensor Structured with MOS-FET," J. KIEEME, vol.26, no.9, pp.707-711, 2013. DOI: 10.4313/JKEM.2013.26.9.707
  3. W. J. Lee, M. K. Choi, and K. U. Jang, "NOx Gas Detecting Properties of the Nitrocellulose/MWCNT Thin Film Coated on the Glass Substrate," J. KSDIT, vol.11, no.1, pp.55-59, 2012.
  4. H. S. Kim, Y. S. Park, and K. U. Jang. "Detection Characteristics for the NOx Gas Concentration with the Vgs Using the MWCNT Gas Sensor Structured with MOS-FET," J. KIEEME, vol.26, no.4, pp.257-261, 2014.
  5. Altsoft, "Comsol multiphysics guide," http://www.comsol.com
  6. Marina Santo Zarnik, Franc Novak, Gregor Papa, "Thermal phenomena in LTCC sensor structures," Sensors and Actuators A: Physical, vol.290, pp.198-206, 2019. https://doi.org/10.1016/j.sna.2019.02.031
  7. Ilkka Korhonen, Jero Ahola, "Studying thermal protection for mobile sensor operating in combustion environment," Measurement, vol.145, pp.594-599 2019. DOI: 10.1016/j.measurement.2019.04.025
  8. Mario Culebras, Antonio M. Lopez, Clara M. Gomez, Andres Cantarero, "Thermal sensor based on a polymer nanofilm," Sensors and Actuators A: Physical, vol.239, pp.161-165, 2016. DOI: 10.1016/j.sna.2016.01.010
  9. Lin Shu, Xuemin Wang, Ling Li, Dawei Yan, Weidong Wu, "The investigation of integrated SAW strain sensor based on AlN/TC4 structure," Sensors and Actuators A: Physical, vol.293, pp.14-20, 2019. DOI: 10.1016/j.sna.2019.04.012
  10. Abolhasan Khajepour, Faezeh Rahmani, "An approach to design a 90Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL, and MCNP," Applied Radiation and Isotopes, vol.119, pp.51-59, 2017. DOI: 10.1016/j.apradiso.2016.11.001
  11. Krishnadass Karthick, S. Suresh, Harjit Singh, Grashin C Joy, R. Dhanuskodi, "Theoretical and experimental evaluation of thermal interface materials and other influencing parameters for thermoelectric generator system," Renewable Energy, vol.134, pp. 25-43, 2019. DOI: 10.1016/j.renene.2018.10.109
  12. Y. Q. Zhu, C. J. Hepp, G. A. Urban, "Modelling and Simulation of a Thermal Flow Sensor for Determining the Flow Speed and Thermal Properties of Binary Gas Mixtures," Procedia Engineering, vol.168, pp.1028-1031, 2016. DOI: 10.1016/j.proeng.2016.11.332
  13. K. U. Jang, JKEEME, "Thermal Flux Phenomena for the FET-typed MWCNT Gas Sensor with the Electrode Distance of 60 ${\mu}m$," vol.28, no.6, pp.403-407, 2015.

Cited by

  1. 웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션 vol.33, pp.4, 2020, https://doi.org/10.4313/jkem.2020.33.4.321