DOI QR코드

DOI QR Code

Draft genome sequence of Ruminococcus sp. KGMB03662 isolated from healthy Korean human feces

건강한 한국인 분변으로부터 분리된 Ruminococcus sp. KGMB03662 균주의 유전체 염기서열 초안

  • Han, Kook-Il (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Se Won (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Eom, Mi Kyung (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Ji-Sun (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Keun Chul (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Suh, Min Kuk (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Han Sol (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Seung-Hwan (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Ju Huck (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Jam-Eon (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Byeong Seob (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ryu, Seoung Woo (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yu, Seung Yeob (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Seung-Hyeon (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Dong Ho (Seoul National University Bundang Hospital) ;
  • Yoon, Hyuk (Seoul National University Bundang Hospital) ;
  • Kim, Byung-Yong (ChunLab Inc.) ;
  • Lee, Je Hee (ChunLab Inc.) ;
  • Lee, Jung-Sook (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology)
  • 한국일 (한국생명공학연구원 생물자원센터) ;
  • 강세원 (한국생명공학연구원 생물자원센터) ;
  • 엄미경 (한국생명공학연구원 생물자원센터) ;
  • 김지선 (한국생명공학연구원 생물자원센터) ;
  • 이근철 (한국생명공학연구원 생물자원센터) ;
  • 서민국 (한국생명공학연구원 생물자원센터) ;
  • 김한솔 (한국생명공학연구원 생물자원센터) ;
  • 박승환 (한국생명공학연구원 생물자원센터) ;
  • 이주혁 (한국생명공학연구원 생물자원센터) ;
  • 박잠언 (한국생명공학연구원 생물자원센터) ;
  • 오병섭 (한국생명공학연구원 생물자원센터) ;
  • 유승우 (한국생명공학연구원 생물자원센터) ;
  • 유승엽 (한국생명공학연구원 생물자원센터) ;
  • 최승현 (한국생명공학연구원 생물자원센터) ;
  • 이동호 (분당서울대학교병원) ;
  • 윤혁 (분당서울대학교병원) ;
  • 김병용 (천랩) ;
  • 이제희 (천랩) ;
  • 이정숙 (한국생명공학연구원 생물자원센터)
  • Received : 2019.07.03
  • Accepted : 2019.07.16
  • Published : 2019.09.30

Abstract

Ruminococcus sp. KGMB03662 was isolated from fecal samples obtained from a healthy Korean. The whole-genome sequence of Ruminococcus sp. KGMB03662 was analyzed using the PacBio Sequel platform. The genome comprises a 2,707,502 bp chromosome with a G + C content of 43.09%, 2,484 total genes, 2,367 protein-coding gene, 14 rRNA genes, and 53 tRNA genes. In the draft genome, genes involved in the hydrolysis enzyme, fatty acid biosynthesis, fatty acid metabolite, antibiotic biosynthesis, and antibiotic resistance have been identified. Those genes of KGMB03662 may be related to the regulation of human health and disease.

본 연구에서는 건강한 한국인 분변으로부터 Ruminococcus sp. KGMB03662 균주를 분리하고 유전체서열을 PacBio Sequel 플랫폼을 사용하여 분석하였다. 염색체의 크기는 2,707,502 bp로 G + C 구성 비율은 43.09%, 총 유전자수는 2,484개, 단백질 코딩 유전자는 2,367개, rRNA는 14개 및 tRNA는 53개로 구성되었다. 본 유전체로부터 가수분해효소, 지방산생합성 및 대사와 항생제생합성 및 내성 관련 유전자를 확인하였다. 이러한 유전체의 분석은 KGMB03662 균주가 사람의 건강 및 질병에 관여할 것으로 여겨진다.

Keywords

References

  1. Chassard C, Delmas E, Robert C, Lawson PA, and Bernalier-Donadille A. 2012. Ruminococcus champanellensis sp. nov., a cellulosedegrading bacterium from human gut microbiota. Int. J. Syst. Evol. Microbiol. 62, 138-143. https://doi.org/10.1099/ijs.0.027375-0
  2. Domingo MC, Huletsky A, Boissinot M, Bernard KA, Picard FJ, and Bergeron MG. 2008. Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int. J. Syst. Evol. Microbiol. 58, 1393-1397. https://doi.org/10.1099/ijs.0.65259-0
  3. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, Peddada SD, Factor SA, Molho E, Zabetian CP, et al. 2017. Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Mov. Disord. 32, 739-749. https://doi.org/10.1002/mds.26942
  4. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi, M, and Tanabe M. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199-205. https://doi.org/10.1093/nar/gkt1076
  5. Kim MS, Roh SW, and Bae JW. 2011. Ruminococcus faecis sp. nov., isolated from human faeces. J. Microbiol. 49, 487-491. https://doi.org/10.1007/s12275-011-0505-7
  6. Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM, Bercik P, and Surette MG. 2016. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med. 8, 72. https://doi.org/10.1186/s13073-016-0327-7
  7. Morrison DJ and Preston T. 2016. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189-200. https://doi.org/10.1080/19490976.2015.1134082
  8. Nagao-Kitamoto H and Kamada N. 2017. Host-microbial cross-talk in inflammatory bowel disease. Immune Netw. 17, 11-12.
  9. Nawrocki EP and Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933-2935. https://doi.org/10.1093/bioinformatics/btt509
  10. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, et al. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691-5702. https://doi.org/10.1093/nar/gki866
  11. Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldon T, Rattei T, Creevey C, Michael K, et al. 2014. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 42, D231-239. https://doi.org/10.1093/nar/gkt1253
  12. Rainey F. 2009. Springer. Family VIII. Ruminococcaceae fam. nov, pp. 1016-1043. Bergey's Manual of Systematic Bacteriology, 2nd edn, Vol. 3. Dordrecht, Heidelberg, London and New York, USA.
  13. Sekirov I, Russell SL, Antunes LC, and Finlay BB. 2010. Gut microbiota in health and disease. Physiol. Rev. 90, 859-904. https://doi.org/10.1152/physrev.00045.2009
  14. Sijpesteijn A. 1949. Cellulose-decomposing bacteria from the rumen of cattle. Thesis. Leiden University. With a summary in Antonie van Leeuwenhoek. J. Microbiol. Serol. 15, 49.
  15. Simmering R, Taras D, Schwiertz A, Le Blay G, Gruhl B, Lawson PA, Collins MD, and Blaut M. 2002. Ruminococcus luti sp. nov., isolated from a human faecal sample. Syst. Appl. Microbiol. 25, 189-193. https://doi.org/10.1078/0723-2020-00112
  16. Tatusov RL, Galperin MY, Natale DA, and Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33-36. https://doi.org/10.1093/nar/28.1.33
  17. UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204-212. https://doi.org/10.1093/nar/gku989