참고문헌
- Andersson, E., and J.-N. Thepaut, 2008: ECMWF's 4D-Var data assimilation system - the genesis and ten years in operations. ECMWF Newsletter, 115, 8-12.
- Atkinson, N., J. Cameron, B. Candy, and S. English, 2005: Bias correction of satellite data at the Met Office. Presentation, ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation, UK, ECMWF [Available online at https://www.ecmwf.int/node/15846].
- Auligne, T., and A. P. McNally, 2007: Interaction between bias correction and quality control. Q. J. R. Meteorol. Soc., 133, 643-653. https://doi.org/10.1002/qj.57
- Auligne, T.,A. P. McNally, and D. P. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteorol. Soc., 133, 631-642. https://doi.org/10.1002/qj.56
- Baker, N. L., T. F. Hogan, W. F. Campbell, R. L. Pauley, and S. D. Swadley, 2005: The impact of AMSU-A radiance assimilation in the U.S. Navy's Operational Global Atmospheric Prediction System (NOGAPS). NRL Memorandum Report. NRL/MR/7530--05-8836, 22 pp.
- Bauer, P., R. Buizza, C. Cardinali, and J.-N. Thepaut, 2011: Impact of singular-vector-based satellite data thinning on NWP. Q. J. R. Meteorol. Soc., 137, 286-302. https://doi.org/10.1002/qj.733
- Cameron, J., and W. Bell, 2016: The testing and planned implementation of variational bias correction (VarBC) at the Met Office. Proceedings of the 20th International TOVS Study Conferences, Wisconsin, USA, 21 pp.
- Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Q. J. R. Meteorol. Soc., 135, 239-250. https://doi.org/10.1002/qj.366
- Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.
- Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Proceedings of the ECMWF workshop on assimilation of high spectral resolution sounders in NWP, Reading, UK, ECMWF, 97-112.
- Dee, D. P., 2005: Bias and data assimilation. Q. J. R. Meteorol. Soc., 131, 3323-3343. https://doi.org/10.1256/qj.05.137
- Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX observation impact intercomparison experiment. Mon. Wea. Rev., 138, 4009-4025, doi:10.1175/2010MWR3393.1.
- Grody, N., F. Weng, and R. Ferraro, 1999: Application of AMSU for observation water vapor, cloud liquid water, precipitation, snow cover and sea ice concentration. Proceedings of the 10th International TOVS Study Conference, Boulder, CO, 230-240.
- Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001: Determination of precipitatable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophy. Res., 106, 2943-2953. https://doi.org/10.1029/2000JD900616
- Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Q. J. R. Meteorol. Soc., 127, 1453-1468. https://doi.org/10.1002/qj.49712757418
- Hilton, F., N. C. Atkinson, S. J. English, and J. R. Eyre, 2009: Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments. Q. J. R. Meteorol. Soc., 135, 495-505. https://doi.org/10.1002/qj.379
- Hollingsworth, A., D. B. Shaw, P. Lonnberg, L. Illari, K. Arpe, and A. J. Simmons, 1986: Monitoring of observation and analysis quality by a data assimilation system. Mon. Wea. Rev., 114, 861-879. https://doi.org/10.1175/1520-0493(1986)114<0861:MOOAAQ>2.0.CO;2
- Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos. Sci., 54, 267-292, doi:10.1007/s13143-018-0028-9.
- Isaksen, L., 2011: Data assimilation on future computer architectures. Proc. Seminar on Data Assimilation for Atmosphere and Ocean, ECMWF Seminar on Data assimilation for atmosphere and ocean, Reading, United Kingdom, ECMWF, 301-322.
- Joo, S., J. Eyre, and R. Marriott, 2013: The impact of Metop and other satellite data within the Met Office global NWP system using an adjoint-based sensitivity method. Mon. Wea. Rev., 141, 3331-3342, doi:10.1175/MWR-D-12-00232.1.
- Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS. Asia-Pac. J. Atmos. Sci., 54, 303-318, doi:10.1007/s13143-018-0030-2.
- Kelly, G., J.-N. Thepaut, R. Buizza, and C. Cardinali, 2007: The value of observations. І: data denial experiments for the Atlantic and the Pacific. Q. J. R. Meteorol. Soc., 133, 1803-1815. https://doi.org/10.1002/qj.150
- Kim, Y.-J., W. F. Campbell, and S. D. Swadley, 2010: Reduction of middle-atmospheric forecast bias through improvement in satellite radiance quality control. Wea. Forecasting, 25, 681-700, doi:10.1175/2009WAF2222329.1.
- Lorenc, A. C., and O. Hammon, 1988: Objective quality control of observations using Bayesian methods. Theory, and a practical implementation. Q. J. R. Meteorol. Soc., 114, 515-543. https://doi.org/10.1002/qj.49711448012
- Lorenc, A. C., and R. T. Marriott, 2014: Forecast sensitivity to observations in the Met Office global numerical weather prediction system. Q. J. R. Meteorol. Soc., 140, 209-224, doi:10.1002/qj.2122.
- Lee, S., J.-H. Kim, J.-H. Kang, and H.-W. Chun, 2013: Development of pre-processing and bias correction modules for AMSU-A satellite data in the KIAPS observation processing system. Atmosphere, 23, 453-470 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2013.23.4.453
- Lee, S., S. Kim, H.-W. Chun, J.-H. Kim, and J.-H. Kang, 2014: Pre-processing and bias correction for AMSUA radiance data based on statistical methods. Atmosphere, 24, 491-502 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2014.24.4.491
- Rabier, F., 2011: Pre- and post-processing in data assimilation. Conf. paper, Seminar on data assimilation for atmosphere and ocean, Reading, UK, ECMWF, 45-59 [Available online at https://www.ecmwf.int/node/11785].
- Rabier, F., H. Jarvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: experimental results with simplified physics. Q. J. R. Meteorol. Soc., 126, 1143-1170. https://doi.org/10.1002/qj.49712656415
- Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc., 133, 347-362. https://doi.org/10.1002/qj.32
- Song, H.-J., and I.-H. Kwon, 2015: Spectral transformation using a cubed-sphere grid for a three-dimensional variational data assimilation system. Mon. Wea. Rev., 143, 2581-2599, doi:10.1175/MWR-D-14-00089.1.
- Song, H.-J., J. Kwon, I.-H. Kwon, J.-H. Ha, J.-H. Kang, S. Lee, H.-W. Chun, and S. Lim, 2017: The impact of the nonlinear balance equation on a 3D-Var cycle during an Australian-winter month as compared with the regressed wind-mass balance. Q. J. R. Meteorol. Soc., 143, 2036-2049, doi:10.1002/qj.3065.