References
- Safarpour AR, Hosseini SV, Mehrabani D. 2013. Epidemiology of inflammatory bowel diseases in iran and Asia; a mini review. Iran. J. Med. Sci. 38: 140-149.
- Dolan KT, Chang EB. 2016. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Mol. Nutr. Food Res. 61.
- Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461-2470. https://doi.org/10.1128/AEM.02272-07
- He Q, Li X, Liu C, Su L, Xia Z, Li X, et al. 2016. Dysbiosis of the fecal microbiota in the TNBS-induced Crohn's disease mouse model. Appl. Microbiol. Biotechnol. 100: 4485-4494. https://doi.org/10.1007/s00253-015-7205-x
- Liuyang, Zhao, Xiang, Zhang. 2017. The Composition of colonic commensal bacteria according to anatomical localization in colorectal cancer. Engineering 3: 90-97. https://doi.org/10.1016/J.ENG.2017.01.012
- Clemente JC, Ursell LK, Parfrey LW, Knight R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258-1270. https://doi.org/10.1016/j.cell.2012.01.035
- Cohen RD, Woseth DM, T histed RA, H anauer SB. 2000. A meta-analysis and overview of the literature on treatment options for left-sided ulcerative colitis and ulcerative proctitis. Am. J. Gastroenterol. 95: 1263-1276. https://doi.org/10.1111/j.1572-0241.2000.01940.x
- Ferraris L, Aires J, Waligora-Dupriet AJ, Butel MJ. 2010. New selective medium for selection of bifidobacteria from human feces. Anaerobe 16: 469-471. https://doi.org/10.1016/j.anaerobe.2010.03.008
- Plazadiaz J, Fernandezcaballero JA, Chueca N, Garcia F, Gomezllorente C, Saezlara MJ, et al. 2015. Pyrosequencing analysis reveals changes in intestinal microbiota of healthy adults who received a daily dose of immunomodulatory probiotic strains. Nutrients 7: 3999-4015. https://doi.org/10.3390/nu7063999
- Kawahara M, Nemoto M, Nakata T, Kondo S, Takahashi H, Kimura B, et al. 2015. Anti-inflammatory properties of fermented soy milk with Lactococcus lactis subsp. lactis SSU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice. Int. Immunopharmacol. 26: 295-303. https://doi.org/10.1016/j.intimp.2015.04.004
- Jo SG, Noh EJ, Lee JY, Kim G, Choi JH, Lee ME, et al. 2016. Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSSinduced colitis in mice. J. Microbiol. 54: 503-509. https://doi.org/10.1007/s12275-016-6160-2
- Liu YW, Su YW, Ong WK, Cheng TH, T sai YC. 2011. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. Int. Immunopharmacol. 11: 2159-2166. https://doi.org/10.1016/j.intimp.2011.09.013
- Scott KP, M artin JC, Duncan SH, F lint HJ. 2014. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. Fems Microbiol. Ecol. 87: 30-40. https://doi.org/10.1111/1574-6941.12186
- Grimm V, Gleinser M, Neu C, Zhurina D, Riedel CU. 2014. Expression of fluorescent proteins in bifidobacteria for analysis of host-microbe interactions. Appl. Environ. Microbiol. 80: 2842-2850. https://doi.org/10.1128/AEM.04261-13
- Palmer R. 2011. Fecal matters. Nat. Med. 17: 150-152. https://doi.org/10.1038/nm0211-150
-
Tyagi N, Moshal KS, Tyagi SC, Lominadze D. 2007.
${\gamma}$ -Aminbuturic acid a receptor mitigates homocysteine-induced endothelial cell permeability. Endothelium 14: 315-323. https://doi.org/10.1080/10623320701746164 - Chen M, Mei Q, Xu J, Lu C, Fang H, Liu X. 2012. Detection of melatonin and homocysteine simultaneously in ulcerative colitis. Clin. Chim. Acta 413: 30-33. https://doi.org/10.1016/j.cca.2011.06.036
-
Zijlstra WG, Kampen EJV. 1960. Standardization of hemoglobinometry : I. the extinction coefficient of hemiglobincyanide at
${\lambda}$ = 540 m${\mu}$ :${\varepsilon}$ 540 HiCN. Clin. Chim. Acta 5: 719-726. https://doi.org/10.1016/0009-8981(60)90014-0 - Sang LX, Bing C, Cong D, Nan G, Liu WX, Min J. 2013. Heat-killed VSL#3 ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Int. J. Mol. Sci. 15: 15-28. https://doi.org/10.3390/ijms15010015
- Ding SZ, H ao D, Qiao M, Liu XC, Jing HU, Yong-Mei HU, et al. 2016. Effect of homocysteine on the intestinal permeability by regulating MEK-ERK-MLCK signal transduction in experimental colitis rats. Chinese Pharmacological Bulletin 34: 498-502.
- Tateishi H, Mitsuyama K, Toyonaga A, Tomoyose M, Tanikawa K. 1997. Role of cytokines in experimental colitis: relation to intestinal permeability. Digestion 58: 271-281. https://doi.org/10.1159/000201454
- Gough E, Shaikh H, Manges AR. 2011. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 53: 994-1002. https://doi.org/10.1093/cid/cir632
- Guo B, Harstall C, Louie T, Zanten SVV, Dieleman LA. 2012. Systematic review: faecal transplantation for the treatment of Clostridium difficile-associated disease. Aliment. Pharmacol. Ther. 35: 865-875. https://doi.org/10.1111/j.1365-2036.2012.05033.x
- Khoruts A. 2014. Faecal microbiota transplantation in 2013: developing human gut microbiota as a class of therapeutics. Nat. Rev. Gastroenterol. Hepatol. 11: 79-80. https://doi.org/10.1038/nrgastro.2013.231
- Sokol H, Seksik P, Furet JP, Firmesse O, Nionlarmurier I, Beaugerie L, et al. 2009. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15: 1183-1189. https://doi.org/10.1002/ibd.20903
- Uronis JM, Muhlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C. 2009. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One. 4: e6026. https://doi.org/10.1371/journal.pone.0006026
- Scarpellini E, Ianiro G, Attili F, Bassanelli C, Santis AD, Gasbarrini A. 2015. The human gut microbiota and virome: potential therapeutic implications. Dig. Liver Dis. 47: 1007-1012. https://doi.org/10.1016/j.dld.2015.07.008
- Preising J, Philippe D, Gleinser M, Wei H, Blum S, Eikmanns BJ, et al. 2010. Selection of bifidobacteria based on adhesion and anti-inflammatory capacity in vitro for amelioration of murine colitis. Appl. Environ. Microbiol. 76: 3048-3051. https://doi.org/10.1128/AEM.03127-09
- Toshimitsu T, Ozaki S, Mochizuki J, Furuichi K, Asami Y. 2017. Effects of Lactobacillus plantarum OLL2712 culture conditions on the anti-inflammatory activity for murine immune cells and obese and type 2 diabetic mice. Appl. Environ. Microbiol. 83: AEM.03001-03016.
- Prisciandaro L, Geier M, Butler R, Cummins A, Howarth G. 2009. Probiotics and their derivatives as treatments for inflammatory bowel disease. Inflammatory Bowel Diseases 15: 1906-1914. https://doi.org/10.1002/ibd.20938
- Bullock NR, Booth JC, Gibson GR. 2004. Comparative composition of bacteria in the human intestinal microflora during remission and active ulcerative colitis. Curr. Issues Intest. Microbiol. 5: 59-64.
- Ghosh S, Dai C, Brown K, Rajendiran E, Makarenko S, Baker J, et al. 2011. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am. J. Physiol. Gastrointest Liver Physiol. 301: 39-49. https://doi.org/10.1152/ajpgi.00509.2010
- Munyaka PM, Rabbi MF, Khafipour E, Ghia JE. 2016. Acute dextran sulfate sodium (DSS)-induced colitis promotes gut microbial dysbiosis in mice. J. Basic Microbiol. 56: 986-998. https://doi.org/10.1002/jobm.201500726
- Zhang G, Meredith TC, Kahne D. 2013. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr. Opinion Microbiol. 16: 779-785. https://doi.org/10.1016/j.mib.2013.09.007
- Flannigan KL, Agbor TA, Blackler RW, Kim JJ, Khan WI, Verdu EF, et al. 2014. Impaired hydrogen sulfide synthesis and IL-10 signaling underlie hyperhomocysteinemia-associated exacerbation of colitis. Proc. Natil. Acad. Sci. USA 111: 13559. https://doi.org/10.1073/pnas.1413390111
Cited by
- Apple polyphenols extract alleviated dextran sulfate sodium‐induced ulcerative colitis in C57BL/6 male mice by restoring bile acid metabolism disorder and gut microbiota dysbiosis vol.35, pp.3, 2019, https://doi.org/10.1002/ptr.6910
- In Vivo Healthy Benefits of Galacto-Oligosaccharides from Lupinus albus (LA-GOS) in Butyrate Production through Intestinal Microbiota vol.11, pp.11, 2021, https://doi.org/10.3390/biom11111658