DOI QR코드

DOI QR Code

First Report on Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Isolates in Children Admitted to Tertiary Hospitals in Vietnam

  • 투고 : 2019.04.25
  • 심사 : 2019.08.07
  • 발행 : 2019.09.28

초록

The extensive distribution of multidrug-resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) poses a threat to healthcare worldwide. This study aimed to investigate the MDR and molecular patterns of MRSA isolates in children admitted to the two biggest tertiary care pediatric hospitals in northern and southern Vietnam. A total of 168 MRSA strains were collected to determine antibiotic susceptibility by minimum inhibitory concentration tests. Antibiotic-resistant genes, pulsed-field gel electrophoresis, staphylococcal cassette chromosome mec (SCCmec) typing, and multilocus sequence typing were used for the molecular characterization of MRSA. Among the total strains, the MDR rate (51.8%) was significantly higher in the northern hospital than in the southern hospital (73% vs. 39%, p < 0.0001). The MDR-MRSA with the highest rates were "ciprofloxacin-erythromycin-gentamicintetracyclines" (35.6%), followed by "erythromycin-tetracycline-chloramphenicol" (24.1%), and "ciprofloxacin-erythromycin-gentamicin" (19.5%), showing an accumulative total of 79.3%. The most susceptible antibiotics were rifampicin (100%) and vancomycin (100%), followed by doxycycline (94.0%), meropenem (78.0%), and cefotaxime (75.0%). The SCCmecII strains showed greater resistance to gentamicin, ciprofloxacin, tetracycline, meropenem and cephalosporins compared with the other strains. The SCCmecII strains exhibited the highest rate in the tested genes (aacA/aphD: 55.2%, ermA/B/C: 89.7%, and tetK/M: 82.8%). ST5-SCCmecII was the predominant clone in the northern hospital, whereas SCCmecIVa was more pronounced in the southern hospital. In conclusion, our results raised concerns about the predominant MDR-MRSA strains in the pediatric hospitals in Vietnam. The north-south difference in the antibiotic resistance patterns and genetic structure of MRSA suggests different MRSA origins and various uses of antimicrobial agents between the two regions.

키워드

참고문헌

  1. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. 2005. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 5: 751-762. https://doi.org/10.1016/S1473-3099(05)70295-4
  2. Boucher HW, Corey GR. 2008. Epidemiology of methicillinresistant Staphylococcus aureus. Clin. Infect. Dis. 46: S344-S349. https://doi.org/10.1086/533590
  3. David MZ, Daum RS. 2010. Community-associated methicillinresistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 23: 616-687. https://doi.org/10.1128/CMR.00081-09
  4. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. 2018. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers. 4: 18033. https://doi.org/10.1038/nrdp.2018.33
  5. Sola C, Paganini H, Egea AL, Moyano AJ, Garnero A, Kevric I, et al. 2012. Study group of CA-MRSA in children, Argentina-2007, Lopardo H, Bocco JL. Spread of epidemic MRSA-ST5-IV clone encoding PVL as a major cause of community onset staphylococcal infections in Argentinean children. PLoS One. 7: e30487. https://doi.org/10.1371/journal.pone.0030487
  6. Van Nguyen K, Zhang T, Thi Vu BN, Dao TT, Tran TK, Thi Nguyen DN, et al. 2014. Staphylococcus aureus nasopharyngeal carriage in rural and urban northern Vietnam. Trans. R. Soc. Trop. Med. Hyg. 108: 783-790. https://doi.org/10.1093/trstmh/tru132
  7. Ngoc Thi Vu B, J Jafari A, Aardema M, Kieu Thi Tran H, Ngoc Thi Nguyen D, Tuyet Dao T, et al. 2016. Population structure of colonizing and invasive Staphylococcus aureus strains in northern Vietnam. J. Med. Microbiol. 65: 298-305. https://doi.org/10.1099/jmm.0.000220
  8. Dat VQ, Vu HN, Nguyen The H, Nguyen HT, Hoang LB, Vu Tien Viet D, et al. 2017. Bacterial bloodstream infections in a tertiary infectious diseases hospital in Northern Vietnam: aetiology, drug resistance, and treatment outcome. BMC Infect. Dis. 17: 493. https://doi.org/10.1186/s12879-017-2582-7
  9. Song JH, Hsueh PR, Chung DR, Ko KS, Kang CI, Peck KR, et al. 2011. Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. J. Antimicrob. Chemother. 66: 1061-1069. https://doi.org/10.1093/jac/dkr024
  10. Tang CT, Nguyen DT, Ngo TH, Nguyen TM, Le VT, To SD, et al. 2007. An outbreak of severe infections with communityacquired MRSA carrying the Panton-Valentine leukocidin following vaccination. PLoS One 2: e822. https://doi.org/10.1371/journal.pone.0000822
  11. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38: 1008-1015. https://doi.org/10.1128/JCM.38.3.1008-1015.2000
  12. Oliveira DC, de Lencastre H. 2002. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents. Chemother. 46: 2155-2161. https://doi.org/10.1128/AAC.46.7.2155-2161.2002
  13. Clinical and Laboratory Standards Institute (2016) Performance standards for antimicrobial susceptibility testing; 25th informational supplement. CLSI document M100-S26. Clinical and Laboratory Standards Institute, Wayne, PA.
  14. Maes N, Magdalena J, Rottiers S, De Gheldre Y, Struelens MJ. 2002. Evaluation of a triplex PCR assay to discriminate Staphylococcus aureus from coagulase-negative Staphylococci and determine methicillin resistance from blood cultures. J. Clin. Microbiol. 40: 1514-1517. https://doi.org/10.1128/JCM.40.4.1514-1517.2002
  15. McClure JA, Conly JM, Lau V, Elsayed S, Louie T, Hutchins W, et al. 2006. Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillinsusceptible from -resistant staphylococci. J. Clin. Microbiol. 44: 1141-1144. https://doi.org/10.1128/JCM.44.3.1141-1144.2006
  16. Klevens RM, Morrison MA, Fridkin SK, Reingold A, Petit S, Gershman K, et al. 2006. Community-associated methicillinresistant Staphylococcus aureus and healthcare risk factors. Emerg. Infect. Dis. 12: 1991-1993. https://doi.org/10.3201/eid1212.060505
  17. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18: 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  18. David MZ, Crawford SE, Boyle-Vavra S, Hostetler MA, Kim DC, Daum RS. 2006. Contrasting pediatric and adult methicillin-resistant Staphylococcus aureus isolates. Emerg. Infect. Dis. 12: 631-637. https://doi.org/10.3201/eid1204.050960
  19. Wang L, Liu Y, Yang Y, Huang G, Wang C, Deng L, et al. 2012. Multidrug-resistant clones of community-associated meticillin-resistant Staphylococcus aureus isolated from Chinese children and the resistance genes to clindamycin and mupirocin. J. Med. Microbiol. 61: 1240-1247. https://doi.org/10.1099/jmm.0.042663-0
  20. Strommenger B, Kettlitz C, Werner G, Witte W. 2003. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 41: 4089-4094. https://doi.org/10.1128/JCM.41.9.4089-4094.2003
  21. Milheirico C, Oliveira DC, de Lencastre H. 2007. Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: 'SCCmec IV multiplex'. J. Antimicrob. Chemother. 60: 42-48. https://doi.org/10.1093/jac/dkm112
  22. Lee TM, Yang MC, Yang TF, Lee PL, Chien HI, Hsueh JC, et al. 2015. Molecular characterization of community- and healthcare-associated methicillin resistant Staphylococcus aureus isolates in southern Taiwan. Microb. Drug. Resist. 21: 610-621. https://doi.org/10.1089/mdr.2015.0020
  23. Oliveira DC, Tomasz A, H. de Lencastre. 2002. Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect. Dis. 2: 180-189. https://doi.org/10.1016/S1473-3099(02)00227-X
  24. Harkins CP, Pichon B, Doumith M, Parkhill J, Westh H, Tomasz A, et al. 2017. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 18: 130. https://doi.org/10.1186/s13059-017-1252-9
  25. Thuy DB, Campbell J, Nhat LTH, Hoang NVM, Hao NV, Baker S, et al. 2018. Hospital-acquired colonization and infections in a Vietnamese intensive care unit. PLoS One 13: e0203600. https://doi.org/10.1371/journal.pone.0203600
  26. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. 1997. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40: 135-136. https://doi.org/10.1093/jac/40.1.135
  27. Kshetry AO, Pant ND, Bhandari R, Khatri S, Shrestha KL, Upadhaya SK, et al. 2016. Minimum inhibitory concentration of vancomycin to methicillin resistant Staphylococcus aureus isolated from different clinical samples at a tertiary care hospital in Nepal. Antimicrob. Resist. Infect. Control. 5: 27. https://doi.org/10.1186/s13756-016-0126-3
  28. Kaur DC, Chate SS. 2015. Study of antibiotic resistance pattern in methicillin resistant Staphylococcus aureus with special reference to newer antibiotic. J. Glob. Infect. Dis. 7: 78-84. https://doi.org/10.4103/0974-777X.157245
  29. Moise PA, Amodio-Groton M, Rashid M, Lamp KC, Hoffman-Roberts HL, Sakoulas G, et al. 2013. Multicenter evaluation of the clinical outcomes of daptomycin with and without concomitant beta-lactams in patients with Staphylococcus aureus bacteremia and mild to moderate renal impairment. Antimicrob. Agents. Chemother. 57: 1192-1200. https://doi.org/10.1128/AAC.02192-12
  30. Hu J, Ma XX, Tian Y, Pang L, Cui LZ, Shang H. 2013. Reduced vancomycin susceptibility found in methicillinresistant and methicillin-sensitive Staphylococcus aureus clinical isolates in Northeast China. PLoS One 8: e73300. https://doi.org/10.1371/journal.pone.0073300
  31. Pham DK, Chu J, Do NT, Brose F, Degand G, Delahaut P, et al. 2015. Monitoring antibiotic use and residue in freshwater aquaculture for domestic use in Vietnam. Ecohealth 12: 480-489. https://doi.org/10.1007/s10393-014-1006-z
  32. Nguyen MP, Wilson A. 2017. How Could Private Healthcare Better Contribute to Healthcare Coverage in Vietnam? Int. J. Health Policy. Manag. 6: 305-308. https://doi.org/10.15171/ijhpm.2017.05
  33. Thu TA, Rahman M, Coffin S, Harun-Or-Rashid M, Sakamoto J, Hung NV. 2012. Antibiotic use in Vietnamese hospitals: a multicenter point-prevalence study. Am. J. Infect. Control. 40: 840-844. https://doi.org/10.1016/j.ajic.2011.10.020
  34. Nga do TT, Chuc NT, Hoa NP, Hoa NQ, Nguyen NT, Loan HT, et al. 2014. Antibiotic sales in rural and urban pharmacies in northern Vietnam: an observational study. BMC Pharmacol. Toxicol. 15: 6. https://doi.org/10.1186/2050-6511-15-6
  35. Park C, Shin HH, Kwon EY, Choi SM, Kim SH, Park SH, et al. 2009. Two variants of staphylococcal cassette chromosome mec type IVA in community-associated meticillin-resistant Staphylococcus aureus strains in South Korea. J. Med. Microbiol. 58: 1314-1321. https://doi.org/10.1099/jmm.0.009688-0
  36. Higuchi W, Mimura S, Kurosawa Y, Takano T, Iwao Y, Yabe S, et al. 2010. Emergence of the community-acquired methicillin-resistant Staphylococcus aureus USA300 clone in a Japanese child, demonstrating multiple divergent strains in Japan. J. Infect. Chemother. 16: 292-297. https://doi.org/10.1007/s10156-010-0051-Y
  37. Tenover FC, and Goering RV. 2009. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J. Antimicrob. Chemother. 64: 441-446. https://doi.org/10.1093/jac/dkp241
  38. Harastani HH, Araj GF, Tokajian ST. 2014. Molecular characteristics of Staphylococcus aureus isolated from a major hospital in Lebanon. Int. J. Infect. Dis. 19: 33-38. https://doi.org/10.1016/j.ijid.2013.10.007
  39. Coombs GW, Monecke S, Pearson JC, Tan HL, Chew YK, Wilson L, et al. 2011. Evolution and diversity of communityassociated methicillin-resistant Staphylococcus aureus in a geographical region. BMC Microbiol. 11: 215. https://doi.org/10.1186/1471-2180-11-215
  40. Ko KS, Lee JY, Suh JY, Oh WS, Peck KR, Lee NY, et al. 2005. Distribution of major genotypes among methicillin-resistant Staphylococcus aureus clones in Asian countries. J. Clin. Microbiol. 43: 421-426. https://doi.org/10.1128/JCM.43.1.421-426.2005
  41. Teixeira LA, Resende CA, Ormonde LR, Rosenbaum R, Figueiredo AM, de Lencastre H, et al. 1995. Geographic spread of epidemic multiresistant Staphylococcus aureus clone in Brazil. J. Clin. Microbiol. 33: 2400-2404. https://doi.org/10.1128/JCM.33.9.2400-2404.1995
  42. Liu Y, Wang H, Du N, Shen E, Chen H, Niu J, et al. 2009. Molecular evidence for spread of two major methicillinresistant Staphylococcus aureus clones with a unique geographic distribution in Chinese hospitals. Antimicrob. Agents. Chemother. 53: 512-518. https://doi.org/10.1128/AAC.00804-08
  43. Samat M uttaqillah N A, H ussin S, N eoh HM, N oordin A, Ding CH, Wahab AA, et al. 2015. Clonal diversity of methicillin-resistant Staphylococcus aureus in UKM Medical Centre: characterisation by multilocus sequence typing of different SCCmec type representatives. Sains Malaysiana. 44: 1315-1323. https://doi.org/10.17576/jsm-2015-4409-14
  44. Li T, Song Y, Zhu Y, Du X, Li M. 2013. Current status of Staphylococcus aureus infection in a central teaching hospital in Shanghai, China. BMC Microbiol. 13: 153. https://doi.org/10.1186/1471-2180-13-153

피인용 문헌

  1. Novel Derivatives of 4-Methyl-1,2,3-Thiadiazole-5-Carboxylic Acid Hydrazide: Synthesis, Lipophilicity, and In Vitro Antimicrobial Activity Screening vol.11, pp.3, 2019, https://doi.org/10.3390/app11031180
  2. Biological Activity, Lipophilicity and Cytotoxicity of Novel 3-Acetyl-2,5-disubstituted-1,3,4-oxadiazolines vol.22, pp.24, 2019, https://doi.org/10.3390/ijms222413669