DOI QR코드

DOI QR Code

Decolorization of Acid Green 25 by Surface Display of CotA laccase on Bacillus subtilis Spores

  • Park, Jong-Hwa (Department of Chemical Engineering, Dong-A University) ;
  • Kim, Wooil (Department of Chemical Engineering, Dong-A University) ;
  • Lee, Yong-Suk (Department of Biotechnology, Dong-A University) ;
  • Kim, June-Hyung (Department of Chemical Engineering, Dong-A University)
  • Received : 2019.07.05
  • Accepted : 2019.08.13
  • Published : 2019.09.28

Abstract

In this study, we expressed cotA laccase from Bacillus subtilis on the surface of B. subtilis spores for efficient decolorization of synthetic dyes. The cotE, cotG, and cotY genes were used as anchoring motifs for efficient spore surface display of cotA laccase. Moreover, a $His_6$ tag was inserted at the C-terminal end of cotA for the immunological detection of the expressed fusion protein. Appropriate expression of the CotE-CotA (74 kDa), CotG-CotA (76 kDa), and CotY-CotA (73 kDa) fusion proteins was confirmed by western blot. We verified the surface expression of each fusion protein on B. subtilis spore by flow cytometry. The decoloration rates of Acid Green 25 (anthraquinone dye) for the recombinant DB104 (pSDJH-EA), DB104 (pSDJH-GA), DB104 (pSDJH-YA), and the control DB104 spores were 48.75%, 16.12%, 21.10%, and 9.96%, respectively. DB104 (pSDJH-EA) showed the highest decolorization of Acid Green 25 and was subsequently tested on other synthetic dyes with different structures. The decolorization rates of the DB104 (pSDJH-EA) spore for Acid Red 18 (azo dye) and indigo carmine (indigo dye) were 18.58% and 43.20%, respectively. The optimum temperature for the decolorization of Acid Green 25 by the DB104 (pSDJH-EA) spore was found to be $50^{\circ}C$. Upon treatment with known laccase inhibitors, including EDTA, SDS, and $NaN_3$, the decolorization rate of Acid Green 25 by the DB104 (pSDJH-EA) spore decreased by 23%, 80%, and 36%, respectively.

Keywords

References

  1. Keck A, Klein J, Kudlich M, Stolz A, Knackmuss H-J, Mattes R. 1997. Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl. Environ. Microbiol. 63: 3684-3690. https://doi.org/10.1128/AEM.63.9.3684-3690.1997
  2. Robinson T, McMullan G, Marchant R, Nigam P. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77: 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8
  3. Pandey A, Singh P, Iyengar L. 2007. Bacterial decolorization and degradation of azo dyes. Int. Biodeterior. Biodegradation 59: 73-84. https://doi.org/10.1016/j.ibiod.2006.08.006
  4. Zaharia C, Suteu D, Muresan A. 2012. Options and solutions for textile effluent decolorization using some specific physico-chemical treatment steps. Environ. Eng. Manag. J. 11: 493-509. https://doi.org/10.30638/eemj.2012.062
  5. Cho EA, Seo J, Lee DW, Pan JG. 2011. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme Microb Technol. 49: 100-104. https://doi.org/10.1016/j.enzmictec.2011.03.005
  6. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. 2010. Laccases: a never-ending story. Cell Mol. Life Sci. 67: 369-385. https://doi.org/10.1007/s00018-009-0169-1
  7. Yoshida H. 1883. LXIII.-chemistry of lacquer (Urushi). Part I. communication from the chemical society of Tokio. J. Chem. Soc. Trans. 43: 472-486. https://doi.org/10.1039/CT8834300472
  8. Loncar N, Bozic N, Lopez-Santin J, Vujcic Z. 2013. Bacillus amyloliquefaciens laccase-from soil bacteria to recombinant enzyme for wastewater decolorization. Bioresour. Technol. 147: 177-183. https://doi.org/10.1016/j.biortech.2013.08.056
  9. Riva S. 2006. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 24: 219-226. https://doi.org/10.1016/j.tibtech.2006.03.006
  10. Widsten P, Kandelbauer A. 2008. Laccase applications in the forest products industry: a review. Enzyme Microb. Technol. 42: 293-307. https://doi.org/10.1016/j.enzmictec.2007.12.003
  11. Givaudan A, Effosse A, Faure D, Potier P, Bouillant M-L, Bally R. 1993. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol. Lett. 108: 205-210. https://doi.org/10.1111/j.1574-6968.1993.tb06100.x
  12. Sharma P, Goel R, Capalash N. 2007. Bacterial laccases. World J. Microbiol. Biotechnol. 23: 823-832. https://doi.org/10.1007/s11274-006-9305-3
  13. Cha JS, Cooksey DA. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 88: 8915-8919. https://doi.org/10.1073/pnas.88.20.8915
  14. Hsiao YM, Liu YF, Lee PY, Hsu PC, Tseng SY, Pan YC. 2011. Functional characterization of copA gene encoding multicopper oxidase in Xanthomonas campestris pv. campestris. J. Agric. Food Chem. 59: 9290-9302. https://doi.org/10.1021/jf2024006
  15. Diamantidis G, Effosse A, Potier P, Bally R. 2000. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol. Biochem. 32: 919-927. https://doi.org/10.1016/S0038-0717(99)00221-7
  16. Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K. 2003. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J. Biochem. 133: 671-677. https://doi.org/10.1093/jb/mvg086
  17. Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, et al. 2002. Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 2766-2771. https://doi.org/10.1073/pnas.052710499
  18. Durao P, Chen Z, Fernandes AT, Hildebrandt P, Murgida DH, Todorovic S, et al. 2008. Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J. Biol. Inorg. Chem. 13: 183-193. https://doi.org/10.1007/s00775-007-0312-0
  19. Dube E, Shareck F, Hurtubise Y, Daneault C, Beauregard M. 2008. Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl. Microbiol. Biotechnol. 79: 597-603. https://doi.org/10.1007/s00253-008-1475-5
  20. Gopinath KP, Murugesan S, Abraham J, Muthukumar K. 2009. Bacillus sp. mutant for improved biodegradation of Congo red: random mutagenesis approach. Bioresour. Technol. 100: 6295-6300. https://doi.org/10.1016/j.biortech.2009.07.043
  21. Wu J, Kim K-S, Sung N-C, Kim C-H, Lee Y-C. 2009. Isolation and characterization of Shewanella oneidensis WL-7 capable of decolorizing azo dye reactive Black 5. J. Gen. Appl. Microbiol. 55: 51-55. https://doi.org/10.2323/jgam.55.51
  22. Kalyani DC, Telke AA, Govindwar SP, Jadhav JP. 2009. Biodegradation and detoxification of reactive textile dye by isolated Pseudomonas sp. SUK1. Water Environ. Res. 81: 298-307. https://doi.org/10.2175/106143008X357147
  23. Zhang Y, Dong W, Lv Z, Liu J, Zhang W, Zhou J, et al. 2018. Surface display of bacterial Laccase CotA on Escherichia coli cells and its application in industrial dye decolorization. Mol. Biotechnol. 60: 681-689. https://doi.org/10.1007/s12033-018-0103-6
  24. Freudl R, MacIntyre S, Degen M, Henning U. 1986. Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12. J. Mol. Biol. 188: 491-494. https://doi.org/10.1016/0022-2836(86)90171-3
  25. Kim J, Schumann W. 2009. Display of proteins on Bacillus subtilis endospores. Cell Mol. Life Sci. 66: 3127-3136. https://doi.org/10.1007/s00018-009-0067-6
  26. Kondo A, Ueda M. 2004. Yeast cell-surface display--applications of molecular display. Appl. Microbiol Biotechnol. 64: 28-40. https://doi.org/10.1007/s00253-003-1492-3
  27. Ventura M, Jankovic I, Walker DC, Pridmore RD, Zink R. 2002. Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri. Appl. Environ. Microbiol. 68: 6172-6181. https://doi.org/10.1128/AEM.68.12.6172-6181.2002
  28. Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, et al. 2004. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2: e328. https://doi.org/10.1371/journal.pbio.0020328
  29. Kim JH, Lee CS, Kim BG. 2005. Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331: 210-214. https://doi.org/10.1016/j.bbrc.2005.03.144
  30. Sunde EP, Setlow P, Hederstedt L, Halle B. 2009. The physical state of water in bacterial spores. Proc. Natl. Acad. Sci. USA 106: 19334-19339. https://doi.org/10.1073/pnas.0908712106
  31. Kawamura F, Doi RH. 1984. Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J. Bacteriol. 160: 442-444. https://doi.org/10.1128/JB.160.1.442-444.1984
  32. Kim J-H, Choi S-K, Jung H-C, Pan J-G, Kim B-G. 2011. Bacterial surface display of Levansucrase of Zymomonas mobilis using Bacillus Subtilis spore display system. KSBB J. 26: 243-247. https://doi.org/10.7841/ksbbj.2011.26.3.243
  33. Asgher M, Yasmeen Q, Iqbal HM. 2013. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J. Biol. Sci. 20: 347-352. https://doi.org/10.1016/j.sjbs.2013.03.004
  34. Guoyan Z, Yingfeng A, Zabed H, Qi G, Yang M, Jiao Y, et al. 2019. Bacillus subtilis spore surface display technology: A review of its development and applications. J. Microbiol. Biotechnol. 29: 179-190. https://doi.org/10.4014/jmb.1807.06066
  35. Little S, Driks A. 2001. Functional analysis of the Bacillus subtilis morphogenetic spore coat protein CotE. Mol. Microbiol. 42: 1107-1120. https://doi.org/10.1046/j.1365-2958.2001.02708.x
  36. Hwang B-Y, Pan J-G, Kim B-G, Kim J-H. 2013. Functional display of active tetrameric ${\beta}$-galactosidase using Bacillus subtilis spore display system. J. Nanosci. Nanotechnol. 13: 2313-2319. https://doi.org/10.1166/jnn.2013.6889
  37. Hosseini?Abari A, Kim BG, Lee SH, Emtiazi G, Kim W, Kim JH. 2016. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein. J. Basic Microbiol. 56: 1331-1337. https://doi.org/10.1002/jobm.201600203
  38. Giglio R, Fani R, Isticato R, De Felice M, Ricca E, Baccigalupi L. 2011. Organization and evolution of the cotG and cotH genes of Bacillus subtilis. J. Bacteriol. 193: 6664-6673. https://doi.org/10.1128/JB.06121-11
  39. Laaberki MH, Dworkin J. 2008. Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation. J. Bacteriol. 190: 6197-6203. https://doi.org/10.1128/JB.00623-08
  40. Hwang B-Y, Kim B-G, Kim J-H. 2011. Bacterial surface display of a co-factor containing enzyme, ${\omega}$-transaminase from vibrio fluvialis using the Bacillus subtilis spore display system. Biosci. Biotechnol. Biochem. 75: 1862-1865. https://doi.org/10.1271/bbb.110307
  41. Rostami A, Hinc K, Goshadrou F, Shali A, Bayat M, Hassanzadeh M, et al. 2017. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pestic. Biochem. Physiol. 140: 17-23. https://doi.org/10.1016/j.pestbp.2017.05.008
  42. Guo Q, An Y, Yun J, Yang M, Magocha TA, Zhu J, et al. 2018. Enhanced d-tagatose production by spore surfacedisplayed l-arabinose isomerase from isolated Lactobacillus brevis PC16 and biotransformation. Bioresour. Technol. 247: 940-946. https://doi.org/10.1016/j.biortech.2017.09.187
  43. McKenney PT, Driks A, Eskandarian HA, Grabowski P, Guberman J, Wang KH, et al. 2010. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr. Biol. 20: 934-938. https://doi.org/10.1016/j.cub.2010.03.060
  44. Liu H, Krajcikova D, Zhang Z, Wang H, Barak I, Tang J. 2015. Investigating interactions of the Bacillus subtilis spore coat proteins CotY and CotZ using single molecule force spectroscopy. J. Struct. Biol. 192: 14-20. https://doi.org/10.1016/j.jsb.2015.09.001
  45. Wang H, Yang R, Hua X, Zhao W, Zhang W. 2015. Functional display of active ${\beta}$-galactosidase on Bacillus subtilis spores using crust proteins as carriers. Food Sci. Biotechnol. 24: 1755-1759. https://doi.org/10.1007/s10068-015-0228-3
  46. Ghasemi Y, Yarahmadi E, Ghoshoon M, Dabbagh F, Hajighahramani N, Ebrahimi N, et al. 2014. Cloning, expression and purification of laccase enzyme gene from Bacillus subtilis in Escherichia coli. Minerva Biotechnol. 26: 295-300.
  47. Hullo M-F, Moszer I, Danchin A, Martin-Verstraete I. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183: 5426-5430. https://doi.org/10.1128/JB.183.18.5426-5430.2001
  48. Benkhaya S, El Harfi S, El Harfi A. 2017. Classifications, properties and applications of textile dyes: A review. Appl. J. Environ. Eng. Sci. 3: 311-320.
  49. Wang W, Zhang Z, Ni H, Yang X, Li Q, Li L. 2012. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microb. Cell Fact. 11: 75. https://doi.org/10.1186/1475-2859-11-75
  50. Murugesan K, Arulmani M, Nam IH, Kim YM, Chang YS, Kalaichelvan PT. 2006. Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes. Appl. Microbiol. Biotechnol. 72: 939-946. https://doi.org/10.1007/s00253-006-0403-9
  51. Cho E-A, Seo J, Lee D-W, Pan J-G. 2011. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme Microb. Technol. 49: 100-104. https://doi.org/10.1016/j.enzmictec.2011.03.005
  52. Wang T-N, Zhao M. 2017. A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase. Appl. Microbiol. Biotechnol. 101: 685-696. https://doi.org/10.1007/s00253-016-7897-6
  53. Guo H, Zheng B, Jiang D, Qin W. 2017. Overexpression of a laccase with dye decolorization activity from Bacillus sp. induced in Escherichia coli. J. Mol. Microbiol. Biotechnol. 27: 217-227. https://doi.org/10.1159/000478859
  54. Enguita FJ, Matias PM, Martins LO, Placido D, Henriques AO, Carrondo MA. 2002. Spore-coat laccase CotA from Bacillus subtilis: crystallization and preliminary X-ray characterization by the MAD method. Acta Crystallogr. D Biol. Crystallogr. 58(Pt 9): 1490-1493. https://doi.org/10.1107/S0907444902011575
  55. Couto SR, Herrera L. 2006. Inhibitors of laccases: a review. Curr. Enzym. Inhib. 2: 343-352. https://doi.org/10.2174/157340806778699262