References
- Hirayama D, Iida T, Nakase H. 2017. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 19: 92-105. https://doi.org/10.3390/ijms19010092
- Balogh P, Horvath G, Szakal AK. 2004. Immunoarchitecture of distinct reticular fibroblastic domains in the white pulp of mouse spleen. J. Histochem. Cytochem. 52: 1287-1298. https://doi.org/10.1177/002215540405201005
- Nolte MA, Hamann A, Kraal G, Mebius RE. 2002. The strict regulation of lymphocyte migration to splenic white pulp does not involve common homing receptors. Immunology 106: 299-307. https://doi.org/10.1046/j.1365-2567.2002.01443.x
- Lori A, Perrotta M, Lembo G, Carnevale D. 2017. The spleen: a hub connecting nervous and immune systems in cardiovascular and metabolic diseases. Int. J. Mol. Sci. 18: 1216. https://doi.org/10.3390/ijms18061216
- Mebius RE, Kraal G. 2005. Structure and function of the spleen. Nat. Rev. Immunol. 5: 606-616. https://doi.org/10.1038/nri1669
- Im SA, Kim K, Lee CK. 2006. Immunomodulatory activity of polysaccharides isolated from Salicornia herbacea. Int. Immunopharmacol. 6: 1451-1458. https://doi.org/10.1016/j.intimp.2006.04.011
- Montaldo E, Del Zotto G, Della Chiesa M, Mingari MC, Moretta A, De Maria A, et al. 2013. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A 83: 702-713.
- Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. 2008. Functions of natural killer cells. Nat. Immunol. 9: 503-510. https://doi.org/10.1038/ni1582
- Iida Y, Harashima N, Motoshima T, Komohara Y, Eto M, Harada M. 2017. Contrasting effects of cyclophosphamide on anti-CTL-associated protein 4 blockade therapy in two mouse tumor models. Cancer Sci. 108: 1974-1984. https://doi.org/10.1111/cas.13337
- Pass GJ, Carrie D, Boylan M, Lorimore S, Wright E, Houston B, et al. 2005. Role of hepatic cytochrome P450s in the pharmacokinetics and toxicity of cyclophosphamide: studies with the hepatic cytochrome P450 reductase null mouse. Cancer Res. 65: 4211-4217. https://doi.org/10.1158/0008-5472.CAN-04-4103
- Fishman P, Bar-Yehuda S, Barer F, Madi L, Multani AS, Pathak S. 2001. The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp. Cell Res. 269: 230-236. https://doi.org/10.1006/excr.2001.5327
- Dan D, Fischer R, Adler S, Forger F, Villiger PM. 2014. Cyclophosphamide: as bad as its reputation? Long-term single centre experience of cyclophosphamide side effects in the treatment of systemic autoimmune diseases. Swiss Med. Wkly. 144: w14030.
- Singh KP, Gupta RK, Shau H, Ray PK. 1993. Effect of ASTA-Z 7575 (INN Maphosphamide) on human lymphokine-activated killer cell induction. Immunopharmacol. Immunotoxicol. 15: 525-538. https://doi.org/10.3109/08923979309019729
- Moon SM, Lee SA, Han SH, Park BR, Choi MS, Kim JS, et al. 2018. Aqueous extract of Codium fragile alleviates osteoarthritis through the MAPK/NF-kappaB pathways in IL-1betainduced rat primary chondrocytes and a rat osteoarthritis model. Biomed. Pharmacother. 97: 264-270. https://doi.org/10.1016/j.biopha.2017.10.130
- Lee C, Park GH, Ahn EM, Kim BA, Park CI, Jang JH. 2013. Protective effect of Codium fragile against UVB-induced proinflammatory and oxidative damages in HaCaT cells and BALB/c mice. Fitoterapia 86: 54-63. https://doi.org/10.1016/j.fitote.2013.01.020
- Kang CH, Choi YH, Park SY, Kim GY. 2012. Antiinflammatory effects of methanol extract of Codium fragile in lipopolysaccharide-stimulated RAW 264.7 cells. J. Med. Food 15: 44-50. https://doi.org/10.1089/jmf.2010.1540
- Tabarsa M, Karnjanapratum S, Cho M, Kim JK, You S. 2013. Molecular characteristics and biological activities of anionic macromolecules from Codium fragile. Int. J. Biol. Macromol. 59: 1-12. https://doi.org/10.1016/j.ijbiomac.2013.04.022
- Ki Yeul N. 2005. The comparative understanding between red ginseng and white ginsengs, processed ginsengs (Panax ginseng C. A. Meyer). J. Ginseng Res. 29: 1-18. https://doi.org/10.5142/JGR.2005.29.1.001
- Babiker LB, Gadkariem EA, Alashban RM, ALjohar HI. 2014. Investigation of stability of Korean ginseng in herbal drug product. Am. J. Appl. Sci. 11: 160-170. https://doi.org/10.3844/ajassp.2014.160.170
- Kim S, Lee Y, Cho J. 2014. Korean red ginseng extract exhibits neuroprotective effects through inhibition of apoptotic cell death. Biol. Pharm. Bull. 37: 938-946. https://doi.org/10.1248/bpb.b13-00880
- Kim SK, Park JH. 2011. Trends in ginseng research in 2010. J. Ginseng Res. 35: 389-398. https://doi.org/10.5142/jgr.2011.35.4.389
- Huang GC, Wu LS, Chen LG, Yang LL, Wang CC. 2007. Immuno-enhancement effects of Huang Qi Liu Yi Tang in a murine model of cyclophosphamide-induced leucopenia. J. Ethnopharmacol. 109: 229-235. https://doi.org/10.1016/j.jep.2006.07.023
- Yu ZP, Xu DD, Lu LF, Zheng XD, Chen W. 2016. Immunomodulatory effect of a formula developed from American ginseng and Chinese jujube extracts in mice. J. Zhejiang Univ. Sci. B. 17: 147-157. https://doi.org/10.1631/jzus.B1500170
- Monmai C, You S, Park WJ. 2019. Immune-enhancing effects of anionic macromolecules extracted from Codium fragile on cyclophosphamide-treated mice. PLoS One 14: e0211570. https://doi.org/10.1371/journal.pone.0211570
- Sevag M, Lackman D, Smolens J. 1938. The isolation of the components of streptococcal nucleoproteins in serologically active form. J. Biol. Chem. 124: 425-436. https://doi.org/10.1016/S0021-9258(18)74048-9
- Lee KC, Ladizinski B, Federman DG. 2012. Complications associated with use of levamisole-contaminated cocaine: an emerging public health challenge. Mayo Clin. Proc. 87: 581-586. https://doi.org/10.1016/j.mayocp.2012.03.010
- Zhu XL, Chen AF, Lin ZB. 2007. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. J. Ethnopharmacol. 111: 219-226. https://doi.org/10.1016/j.jep.2006.11.013
- Park HR, Lee HS, Cho SY, Kim YS, Shin KS. 2013. Antimetastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Int. J. Mol. Med. 31: 361-368. https://doi.org/10.3892/ijmm.2012.1224
- Chalamaiah M, Yu W, Wu J. 2018. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem. 245: 205-222. https://doi.org/10.1016/j.foodchem.2017.10.087
- Chaplin DD. 2010. Overview of the immune response. J. Allergy Clin. Immunol. 125(2 Suppl 2): S3-S23. https://doi.org/10.1016/j.jaci.2009.12.980
- Ahlmann M, Hempel G. 2016. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother. Pharmacol. 78: 661-671. https://doi.org/10.1007/s00280-016-3152-1
- Emadi A, Jones RJ, Brodsky RA. 2009. Cyclophosphamide and cancer: golden anniversary. Nat. Rev. Clin. Oncol. 6: 638-647. https://doi.org/10.1038/nrclinonc.2009.146
- Wang H, Wang M, Chen J, Tang Y, Dou J, Yu J, et al. 2011. A polysaccharide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide-treated mice. Int. Immunopharmacol. 11: 1946-1953. https://doi.org/10.1016/j.intimp.2011.06.006
- Bronte V, Pittet MJ. 2013. The spleen in local and systemic regulation of immunity. Immunity 39: 806-818. https://doi.org/10.1016/j.immuni.2013.10.010
- Lai X, Pei Q, Song X, Zhou X, Yin Z, Jia R, et al. 2016. The enhancement of immune function and activation of NF-kappaB by resveratrol-treatment in immunosuppressive mice. Int. Immunopharmacol. 33: 42-47. https://doi.org/10.1016/j.intimp.2016.01.028
- Tu J, Sun H-X, Ye Y-P. 2008. Immunomodulatory and antitumor activity of triterpenoid fractions from the rhizomes of Astilbe chinensis. J. Ethnopharmacol. 119: 266-271. https://doi.org/10.1016/j.jep.2008.07.007
- Wang J, Tong X, Li P, Cao H, Su W. 2012. Immunoenhancement effects of shenqi fuzheng injection on cyclophosphamide-induced immunosuppression in BALB/c mice. J. Ethnopharmacol. 139: 788-795. https://doi.org/10.1016/j.jep.2011.12.019
- Bloom BR. 1982. Natural killers to rescue immune surveillance? Nature 300: 214-215. https://doi.org/10.1038/300214a0
- Talmadge JE, Meyers KM, Prieur DJ, Starkey JR. 1980. Role of natural killer cells in tumor growth and metastasis: C57BL/6 normal and beige mice. J. Natl. Cancer Inst. 65: 929-935.
- Constant SL, Bottomly K. 1997. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15: 297-322. https://doi.org/10.1146/annurev.immunol.15.1.297
- Mosmann TR, Coffman RL. 1989. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7: 145-173. https://doi.org/10.1146/annurev.iy.07.040189.001045
- Liu C, Li X, Li Y, Feng Y, Zhou S, Wang F. 2008. Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink. Food Chem. 110: 807-813. https://doi.org/10.1016/j.foodchem.2008.02.026
Cited by
- Co-immunomodulatory Activities of Anionic Macromolecules Extracted from Codium fragile with Red Ginseng Extract on Peritoneal Macrophage of Immune-Suppressed Mice vol.30, pp.3, 2020, https://doi.org/10.4014/jmb.1909.09062
- Codium fragile Ameliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice vol.12, pp.6, 2019, https://doi.org/10.3390/nu12061848
- Echinacea purpurea Alleviates Cyclophosphamide-Induced Immunosuppression in Mice vol.12, pp.1, 2019, https://doi.org/10.3390/app12010105