DOI QR코드

DOI QR Code

Microwave Radiation Effects on the Process of Escherichia coli Cultivation

  • Kuznetsov, Denis (Department of Manufacturing Technology for Drugs with a Course in Biotechnology, Perm State Pharmaceutical Academy) ;
  • Volkhin, Igor (Department of Electronic Engineering and Information Security, Perm State University) ;
  • Orlova, Ekaterina (Department of Manufacturing Technology for Drugs with a Course in Biotechnology, Perm State Pharmaceutical Academy) ;
  • Neschislyaev, Valery (Department of Manufacturing Technology for Drugs with a Course in Biotechnology, Perm State Pharmaceutical Academy) ;
  • Balandina, Alevtina (Department of Manufacturing Technology for Drugs with a Course in Biotechnology, Perm State Pharmaceutical Academy) ;
  • Shirokikh, Anna (Department of Manufacturing Technology for Drugs with a Course in Biotechnology, Perm State Pharmaceutical Academy)
  • 투고 : 2018.10.31
  • 심사 : 2019.02.18
  • 발행 : 2019.09.28

초록

Modern biotechnological industries have been attempting to improve the efficiency of bacterial strain cultivation. Millimeter wave electromagnetic radiation can have a varied influence on E. coli cultivation processes. The results of the study revealed that when a microwave radiation of low intensity is applied to positively adjust the conditions for the accumulation of bacterial culture biomass, a significant role is played not only by radiation parameters, but also by concomitant biological factors, which influence the reproducibility of the cultivation process and help obtain a useful biotechnological effect. The authors suggest a model that can be used to study the molecular mechanisms underlying the changes in the buildup of E. coli biomass under the influence of electromagnetic radiation.

키워드

참고문헌

  1. Kuznetsov DB, Orlova EV, Neschislyaev VA, Volkhin IL, Izmestiev IV, Lunegov IV, et al. 2017. Epitaxy of the bound water phase on hydrophilic surfaces of biopolymers as key mechanism of microwave radiation effects on living objects. Colloids Surf. B. Biointerfaces 154: 40-47. https://doi.org/10.1016/j.colsurfb.2017.03.014
  2. Tadevosian A, Trchunian A. 2009. Effect of coherent extremely high-frequency and low-intensity electromagnetic radiation on the activity of membrane systems in Escherichia coli. Biofizika 54: 1055-1059.
  3. Torgomyan H, Trchounian A. 2013. Bactericidal effects of low-intensity extremely high frequency electromagnetic field: an overview with phenomenon, mechanisms, targets and consequences. Crit. Rev. Microbiol. 39: 102-111. https://doi.org/10.3109/1040841X.2012.691461
  4. Mulkidjanian AY, Cherepanov DA, Heberle J, Junge W. 2005. Proton transfer dynamics at membrane/water interface and mechanism of biological energy conversion. Biochemistry (Mosc) 70: 251-256. https://doi.org/10.1007/s10541-005-0108-1
  5. Mulkidjanian AY, Heberle J, Cherepanov DA. 2006. Protons@ interfaces: implications for biological energy conversion. Biochim. Biophys. Acta 1757: 913-930. https://doi.org/10.1016/j.bbabio.2006.02.015
  6. Nakajima H, Kobayashi K, Kobayashi M, Asako H, Aono R. 1995. Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl. Environ. Microbiol. 61: 2302-2307. https://doi.org/10.1128/AEM.61.6.2302-2307.1995
  7. Roberts IS. 1996. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50: 285-315. https://doi.org/10.1146/annurev.micro.50.1.285
  8. Nikaido H. 1996. Outer Membrane Escherichia coli and Salmonella : Cellular and Molecular Biology. pp. 29-47. 2nd ed. Neidhardt F.C. ASM Press.
  9. Kadner RJ. 1996. Cytoplasmic membrane, Escherichia coli Salmonella Cell, Mol. Biol. pp. 58-87. 2nd ed. Neidhardt F.C.
  10. Smit J, Kamio Y, Nikaido H. 1975. Outer membrane of Salmonella typhimurium: chemical analysis and freezefracture studies with lipopolysaccharide mutants. J. Bacteriol. 124: 942-958. https://doi.org/10.1128/JB.124.2.942-958.1975
  11. Zheng JM, Pollack GH. 2003. Long-range forces extending from polymer-gel surfaces. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 68: 031408. https://doi.org/10.1103/PhysRevE.68.031408
  12. Zheng JM, Chin WC, Khijniak E, Khijniak E Jr, Pollack GH. 2006. Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 127: 19-27. https://doi.org/10.1016/j.cis.2006.07.002
  13. Chai B, Yoo H, Pollack GH. 2009. Effect of radiant energy on nearsurface water. J. Phys. Chem. B. 113: 13953-13958. https://doi.org/10.1021/jp908163w
  14. Trevors JT, Pollack GH. 2012. Origin of microbial life hypothesis: a gel cytoplasm lacking a bilayer membrane, with infrared radiation producing exclusion zone (EZ) water, hydrogen as an energy source and thermosynthesis for bioenergetics. Biochimie 94: 258-262. https://doi.org/10.1016/j.biochi.2011.10.002
  15. Pollack GH, Figueroa X, Zhao Q. 2009. Molecules, water, and radiant energy: new clues for the origin of life. Int. J. Mol. Sci. 10: 1419-1429. https://doi.org/10.3390/ijms10041419
  16. Pollack GH. 2014. Bioelectromagnetic and Subtle Energy Medicine. pp. 105-110. 2nd ed. CRC Press, Taylor & Francis Group.
  17. Nwosu EP. 2014. Gason: A new state of water. Am. J. Sci. Technol. 1: 55-59.
  18. Pitkanen M. 2015. More Precise TGD based view about quantum biology and prebiotic evolution (Part I). DNA Decipher J. 5: 111-143.
  19. Dai J, Bacic Z. 2003. A theoretical study of vibrational mode coupling in $H_5{O_2}^+$. J. Phys. Chem. 119: 6571-6580. https://doi.org/10.1063/1.1603220
  20. Huang X, Braams BJ, Carter S, Bowman JM. 2004. Quantum calculations of vibrational energies of $H_3{O_2}^-$ on an ab initio potential. J. Am. Chem. Soc. 126: 5042-5043. https://doi.org/10.1021/ja049801i
  21. Lobaugh J, Voth AG. 1996. The quantum dynamics of an excess proton in water. J. Chem. Phys. 104: 2056-2069. https://doi.org/10.1063/1.470962
  22. Valeev EF, Schaefer III HF. 1998. The protonated water dimer: Brueckner methods remove the spurious $C_1$ symmetry minimum. J. Chem. Phys. 108: 7197-7201. https://doi.org/10.1063/1.476137
  23. Xantheas SS. 1995. Theoretical study of hydroxide ion-water clusters. J. Am. Chem. Soc. 117: 10373-10380. https://doi.org/10.1021/ja00146a023
  24. del Valle CP, Novoa JJ. 1997. Density functional computations on the structure and stability of OH-($H_2O$) n (n=1-3) clusters. A test study. Chem. Phys. Lett. 269: 401-407. https://doi.org/10.1016/S0009-2614(97)00315-1
  25. Samson CC, lopper W. 2001. Ab initio calculation of proton barrier and binding energy of the ($H_2O$) $OH^-$ complex. J. Mol. Struct. 586: 201-208. https://doi.org/10.1016/S0166-1280(02)00066-0
  26. Tuckerman ME, Marx D, Parrinello M. 2002. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417: 925-929. https://doi.org/10.1038/nature00797
  27. Diken EG, Headrick JM, Roscioli JR, Bopp JC, Johnson MA, McCoy AB. 2005. Fundamental excitations of the shared proton in the $H_3{O_2}^-$ and $H_5{O_2}^+$ complexes. J. Phys. Chem. A. 109: 1487-1490. https://doi.org/10.1021/jp044155v
  28. Shan SO, Loh S, Hershlag D. 1996. The energetics of hydrogen bonds in model systems: Implications for enzymatic catalysis. Science 272: 97-101. https://doi.org/10.1126/science.272.5258.97
  29. Frey PA, Whitt SA, Tobin JB. 1994. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science 264: 1927-1931. https://doi.org/10.1126/science.7661899
  30. Cleland WW, Kreevoy MM. 1994. Low-barrier hydrogen bonds and enzymic catalysis. Science 264: 1887-1890. https://doi.org/10.1126/science.8009219