DOI QR코드

DOI QR Code

Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/Reperfusion Injury during Liver Transplantation

  • Kwon, Jae Hyun (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Jooyoung (Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Jiye (Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kirchner, Varvara A. (Division of Transplantation, Department of Surgery and Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota) ;
  • Jo, Yong Hwa (Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University) ;
  • Miura, Takeshi (Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University) ;
  • Kim, Nayoung (Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Song, Gi-Won (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Hwang, Shin (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Sung-Gyu (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yoon, Young-In (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Tak, Eunyoung (Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine)
  • 투고 : 2019.01.04
  • 심사 : 2019.08.22
  • 발행 : 2019.09.30

초록

Currently, liver transplantation is the only available remedy for patients with end-stage liver disease. Conservation of transplanted liver graft is the most important issue as it directly related to patient survival. Carbonyl reductase 1 (CBR1) protects cells against oxidative stress and cell death by inactivating cellular membrane-derived lipid aldehydes. Ischemia-reperfusion (I/R) injury during living-donor liver transplantation is known to form reactive oxygen species. Thus, the objective of this study was to investigate whether CBR1 transcription might be increased during liver I/R injury and whether such increase might protect liver against I/R injury. Our results revealed that transcription factor Nrf2 could induce CBR1 transcription in liver of mice during I/R. Pre-treatment with sulforaphane, an activator of Nrf2, increased CBR1 expression, decreased liver enzymes such as aspartate aminotransferase and alanine transaminase, and reduced I/R-related pathological changes. Using oxygen-glucose deprivation and recovery model of human normal liver cell line, it was found that oxidative stress markers and lipid peroxidation products were significantly lowered in cells overexpressing CBR1. Conversely, CBR1 knockdown cells expressed elevated levels of oxidative stress proteins compared to the parental cell line. We also observed that Nrf2 and CBR1 were overexpressed during liver transplantation in clinical samples. These results suggest that CBR1 expression during liver I/R injury is regulated by transcription factor Nrf2. In addition, CBR1 can reduce free radicals and prevent lipid peroxidation. Taken together, CBR1 induction might be a therapeutic strategy for relieving liver I/R injury during liver transplantation.

키워드

참고문헌

  1. Amersi, F., Buelow, R., Kato, H., Ke, B.B., Coito, A.J., Shen, X.D., Zhao, D.L., Zaky, J., Melinek, J., Lassman, C.R., et al. (1999). Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. J. Clin. Invest. 104, 1631-1639. https://doi.org/10.1172/JCI7903
  2. Chian, S., Thapa, R., Chi, Z., Wang, X.J., and Tang, X. (2014). Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochem. Biophys. Res. Commun. 447, 602-608. https://doi.org/10.1016/j.bbrc.2014.04.039
  3. Chowdhry, S., Nazmy, M.H., Meakin, P.J., Dinkova-Kostova, A.T., Walsh, S.V., Tsujita, T., Dillon, J.F., Ashford, M.L., and Hayes, J.D. (2010). Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis. Free Radic. Biol. Med. 48, 357-371. https://doi.org/10.1016/j.freeradbiomed.2009.11.007
  4. Clavien, P.A., Rüdiger, H.A., and Selzner, M. (2001). Mechanism of hepatocyte death after ischemia: apoptosis versus necrosis. Hepatology 33, 1555-1556. https://doi.org/10.1053/jhep.2001.0103306le02
  5. Ellis, E.M. (2007). Reactive carbonyls and oxidative stress: potential for therapeutic intervention. Pharmacol. Ther. 115, 13-24. https://doi.org/10.1016/j.pharmthera.2007.03.015
  6. Fondevila, C., Busuttil, R.W., and Kupiec-Weglinski, J.W. (2003). Hepatic ischemia/reperfusion injury-a fresh look. Exp. Mol. Pathol. 74, 86-93. https://doi.org/10.1016/S0014-4800(03)00008-X
  7. Funakoshi-Tago, M., Nakamura, K., Tago, K., Mashino, T., and Kasahara, T. (2011). Anti-inflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. Int. Immunopharmacol. 11, 1150-1159. https://doi.org/10.1016/j.intimp.2011.03.012
  8. Higdon, A., Diers, A.R., Oh, J.Y., Landar, A., and Darley-Usmar, V.M. (2012). Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem. J. 442, 453-464. https://doi.org/10.1042/BJ20111752
  9. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., et al. (1997). An Nrf2 small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
  10. Jaeschke, H. (2003). Molecular mechanisms of hepatic ischemiareperfusion injury and preconditioning. Am. J. Physiol. Gastroint. Liver Physiol. 284, G15-G26. https://doi.org/10.1152/ajpgi.00342.2002
  11. Jaeschke, H. and Woolbright, B.L. (2012). Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant. Rev. 26, 103-114. https://doi.org/10.1016/j.trre.2011.10.006
  12. Jaiswal, A.K. (2004). Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199-1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
  13. Kalogeris, T., Baines, C.P., Krenz, M., and Korthuis, R.J. (2011). Ischemia/ reperfusion. Compr. Physiol. 7, 113-170.
  14. Kalogeris, T., Baines, C.P., Krenz, M., and Korthuis, R.J. (2012). Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 298, 229-317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7
  15. Kaspar, J.W., Niture, S.K., and Jaiswal, A.K. (2009). Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 47, 1304-1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035
  16. Kassner, N., Huse, K., Martin, H.J., Godtel-Armbrust, U., Metzger, A., Meineke, I., Brockmoller, J., Klein, K., Zanger, U.M., Maser, E., et al. (2008). Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver. Drug Metab. Dispos. 36, 2113-2120. https://doi.org/10.1124/dmd.108.022251
  17. Kensler, T.W., Egner, P.A., Agyeman, A.S., Visvanathan, K., Groopman, J.D., Chen, J.G., Chen, T.Y., Fahey, J.W., and Talalay, P. (2013). Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr. Chem. 329, 163-177.
  18. Kensler, T.W., Wakabayash, N., and Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89-116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
  19. Klaassen, C.D. and Reisman, S.A. (2010). Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver. Toxicol. Appl. Pharmacol. 244, 57-65. https://doi.org/10.1016/j.taap.2010.01.013
  20. Kobayashi, M. and Yamamoto, M. (2005). Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7, 385-394. https://doi.org/10.1089/ars.2005.7.385
  21. Kong, X., Thimmulappa, R., Kombairaju, P., and Biswal, S. (2010). NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J. Immunol. 185, 569-577. https://doi.org/10.4049/jimmunol.0902315
  22. Kovac, S., Angelova, P.R., Holmström, K.M., Zhang, Y., Dinkova-Kostova, A.T., and Abramov, A.Y. (2015). Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim. Biophys. Acta 1850, 794-801. https://doi.org/10.1016/j.bbagen.2014.11.021
  23. Kudoh, K., Uchinami, H., Yoshioka, M., Seki, E., and Yamamoto, Y. (2014). Nrf2 activation protects the liver from ischemia/reperfusion injury in mice. Ann. Surg. 260, 118-127. https://doi.org/10.1097/SLA.0000000000000287
  24. Lamle, J., Marhenke, S., Borlak, J., Von Wasielewski, R., Eriksson, C.P., Geffers, R., Manns, M.P., Yamamoto, M., and Vogel, A. (2008). Nuclear factor-eythroid 2–related factor 2 prevents alcohol-induced fulminant liver injury. Gastroenterology 134, 1159-1168.e2. https://doi.org/10.1053/j.gastro.2008.01.011
  25. Leonard, M.O., Kieran, N.E., Howell, K., Burne, M.J., Varadarajan, R., Dhakshinamoorthy, S., Porter, A.G., O'Farrelly, C., Rabb, H., and Taylor, C.T. (2006). Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemiareperfusion injury. FASEB J. 20, 2624-2626. https://doi.org/10.1096/fj.06-5097fje
  26. Liu, J., Wu, K.C., Lu, Y.F., Ekuase, E., and Klaassen, C.D. (2013). Nrf2 protection against liver injury produced by various hepatotoxicants. Oxid. Med. Cell Longev. 2013, 305861.
  27. Marinho, H.S., Real, C., Cyrne, L., Soares, H., and Antunes, F. (2014). Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2, 535-562. https://doi.org/10.1016/j.redox.2014.02.006
  28. Mathews, W.R., Guido, D.M., Fisher, M.A., and Jaeschke, H. (1994). Lipid peroxidation as molecular mechanism of liver cell injury during reperfusion after ischemia. Free Radic. Biol. Med. 16, 763-770. https://doi.org/10.1016/0891-5849(94)90191-0
  29. Meakin, P.J., Chowdhry, S., Sharma, R.S., Ashford, F.B., Walsh, S.V., McCrimmon, R.J., Dinkova-Kostova, A.T., Dillon, J.F., Hayes, J.D., and Ashford, M.L. (2014). Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol. Cell. Biol. 34, 3305-3320. https://doi.org/10.1128/MCB.00677-14
  30. Miura, T., Taketomi, A., Nishinaka, T., and Terada, T. (2013). Regulation of human carbonyl reductase 1 (CBR1, SDR21C1) gene by transcription factor Nrf2. Chem. Biol. Interact. 202, 126-135. https://doi.org/10.1016/j.cbi.2012.11.023
  31. Motohashi, H. and Yamamoto, M. (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10, 549-557. https://doi.org/10.1016/j.molmed.2004.09.003
  32. Nguyen, T., Nioi, P., and Pickett, C.B. (2009). The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284, 13291-13295. https://doi.org/10.1074/jbc.R900010200
  33. Oppermann, U. (2007). Carbonyl reductases: The complex relationships of mammalian carbonyland quinone-reducing enzymes and their role in physiology. Annu. Rev. Pharmacol. Toxicol. 47, 293-322. https://doi.org/10.1146/annurev.pharmtox.47.120505.105316
  34. Rashid, M.A., Lee, S., Tak, E., Lee, J., Choi, T.G., Lee, J.W., Kim, J.B., Youn, J.H., Kang, I., Ha, J., et al. (2010). Carbonyl reductase 1 protects pancreatic beta-cells against oxidative stress-induced apoptosis in glucotoxicity and glucolipotoxicity. Free Radic. Biol. Med. 49, 1522-1533. https://doi.org/10.1016/j.freeradbiomed.2010.08.015
  35. Ray, P.D., Huang, B.W., and Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981-990. https://doi.org/10.1016/j.cellsig.2012.01.008
  36. Rotondo, R., Moschini, R., Renzone, G., Tuccinardi, T., Balestri, F., Cappiello, M., Scaloni, A., Mura, U., and Del-Corso, A. (2016). Human carbonyl reductase 1 as efficient catalyst for the reduction of glutathionylated aldehydes derived from lipid peroxidation. Free Radic. Biol. Med. 99, 323-332. https://doi.org/10.1016/j.freeradbiomed.2016.08.015
  37. Serracino-Inglott, F., Habib, N.A., and Mathie, R.T. (2001). Hepatic ischemia-reperfusion injury. Am. J. Surg. 181, 160-166. https://doi.org/10.1016/S0002-9610(00)00573-0
  38. Tak, E., Lee, S., Lee, J., Rashid, M.A., Kim, Y.W., Park, J.H., Park, W.S., Shokat, K.M., Ha, J., and Kim, S.S. (2011). Human carbonyl reductase 1 upregulated by hypoxia renders resistance to apoptosis in hepatocellular carcinoma cells. J. Hepatol. 54, 328-339. https://doi.org/10.1016/j.jhep.2010.06.045
  39. Tang, X., Wang, H., Fan, L., Wu, X., Xin, A., Ren, H., and Wang, X.J. (2011). Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 50, 1599-1609. https://doi.org/10.1016/j.freeradbiomed.2011.03.008
  40. Teoh, N.C. and Farrell, G.C. (2003). Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J. Gastroenterol. Hepatol. 18, 891-902. https://doi.org/10.1046/j.1440-1746.2003.03056.x
  41. Thimmulappa, R.K., Mai, K.H., Srisuma, S., Kensler, T.W., Yamamato, M., and Biswal, S. (2002). Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 62, 5196-5203.
  42. Ziyan, L., Yongmei, Z., Nan, Z., Ning, T., and Baolin, L. (2007). Evaluation of the anti-inflammatory activity of luteolin in experimental animal models. Planta Med. 73, 221-226. https://doi.org/10.1055/s-2007-967122