DOI QR코드

DOI QR Code

Thermophoretic Control of Particle Transport in a Microfluidic Channel

미세유체 채널 내에서 열영동에 의한 입자이동 제어

  • So, Ju-Hee (Human Convergence Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Koo, Hyung-Jun (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
  • 소주희 (한국생산기술연구원 휴먼융합기술그룹) ;
  • 구형준 (서울과학기술대학교 화공생명공학과)
  • Received : 2019.06.27
  • Accepted : 2019.07.11
  • Published : 2019.10.01

Abstract

Thermophoresis is a transport phenomenon of particles driven by a temperature gradient of a medium. In this paper, we discuss the thermophoresis of particles in microfluidic channels. In a non-fluidic, stagnant channel, the thermophoretic transport of micro-particles was found to be larger in proportion to the voltage applied to the platinum wire heat source installed in the channel. The variation of the temperature around the platinum wire depending on the voltage was estimated, by using the Callendar-van Dusen equation. The thermophoretic behavior of nano-particles in the same system was observed, which is similar to that of the microparticles. Finally, we fabricated a Y-shaped microfluidic channel with a platinum wire heat source installed in the channel, to realize the thermophoretic phenomenon of the particles in the suspension flowing through the channel. It is shown that the flow of the suspension can be controlled based on the thermophoretic principle.

열영동은 매질의 온도 구배에 의해 입자가 이동하는 현상이다. 본 논문에서는 미세유체 채널에서 입자의 열영동 현상에 대해서 논의한다. 흐름이 없는 비유동 채널에서 열원인 백금 와이어에 가해지는 전압에 비례해서 열영동에 의한 마이크로 입자의 이동이 더 크게 나타남을 확인하였다. 전압에 따른 백금 와이어 주변 온도 변화는 Callendar-van Dusen 식을 이용하여 예측하였다. 동일한 시스템에서 나노 입자의 열영동 현상을 관찰한 결과, 나노 입자도 마이크로 입자와 유사한 열영동 거동을 보임을 확인하였다. 마지막으로 Y 모양 미세유체 채널을 제작하고 백금 와이어 열원을 채널 내에 설치하여, 채널을 흐르는 현탁액 내의 입자의 열영동 현상을 구현하고, 이를 기반으로 현탁액의 흐름을 제어할 수 있음을 보인다.

Keywords

References

  1. Sajeesh, P. and Sen, A. K., "Particle Separation and Sorting in Microfluidic Devices: A Review," Microfluidics and Nanofluidics, 17(1), 1-52(2014). https://doi.org/10.1007/s10404-013-1291-9
  2. Wu, D., Qin, J. and Lin, B., "Electrophoretic Separations on Microfluidic Chips," Journal of Chromatography A, 1184(1-2), 542-559(2008). https://doi.org/10.1016/j.chroma.2007.11.119
  3. Ahn, K., Kerbage, C., Hunt, T. P., Westervelt, R. M., Link, D. R. and Weitz, D. A., "Dielectrophoretic Manipulation of Drops for High-speed Microfluidic Sorting Devices," Applied Physics Letters, 88(2), 024104(2006). https://doi.org/10.1063/1.2164911
  4. Vigolo, D., Rusconi, R., Piazza, R. and Stone, H. A., "A Portable Device for Temperature Control Along Microchannels," Lab on a Chip, 10(6), 795-798(2010). https://doi.org/10.1039/b919146a
  5. Duhr, S. and Braun, D., "Why Molecules Move Along a Temperature Gradient," Proceedings of the National Academy of Sciences, 103(52), 19678-19682(2006). https://doi.org/10.1073/pnas.0603873103
  6. Braun, D. and Libchaber, A., "Trapping of DNA by Thermophoretic Depletion and Convection," Physical Review Letters, 89(18), 188103(2002). https://doi.org/10.1103/PhysRevLett.89.188103
  7. Vigolo, D., Rusconi, R., Stone, H. A. and Piazza, R., "Thermophoresis: Microfluidics Characterization and Separation," Soft Matter, 6(15), 3489-3493(2010). https://doi.org/10.1039/c002057e
  8. Piazza, R., "Thermophoresis: Moving Particles with Thermal Gradients," Soft Matter, 4(9), 1740-1744(2008). https://doi.org/10.1039/b805888c
  9. Piazza, R. and Parola, A., "Thermophoresis in Colloidal Suspensions," Journal of Physics: Condensed Matter, 20(15), 153102(2008). https://doi.org/10.1088/0953-8984/20/15/153102
  10. Lao, A. I. K., Lee, T. M. H., Hsing, I. M. and Ip, N. Y., "Precise Temperature Control of Microfluidic Chamber for Gas and Liquid Phase Reactions," Sensors and Actuators A: Physical, 84(1-2), 11-17(2000). https://doi.org/10.1016/S0924-4247(99)00356-8
  11. Rastogi, V., Melle, S., Calderon, O. G., Garcia, A. A., Marquez, M. and Velev, O. D., "Synthesis of Light-Diffracting Assemblies from Microspheres and Nanoparticles in Droplets on a Superhydrophobic Surface," Advanced Materials, 20(22), 4263-4268(2008). https://doi.org/10.1002/adma.200703008
  12. So, J.-H. and Dickey, M. D., "Inherently Aligned Microfluidic Electrodes Composed of Liquid Metal," Lab on a Chip, 11(5), 905-911(2011). https://doi.org/10.1039/c0lc00501k
  13. Comite International des Poids et Mesures, "The International Practical Temperature Scale of 1968," Metrologia, 5, 35-44(1969). https://doi.org/10.1088/0026-1394/5/2/001
  14. Duhr, S. and Braun, D., "Thermophoretic Depletion Follows Boltzmann Distribution," Physical Review Letters, 96, 168301 (2006). https://doi.org/10.1103/PhysRevLett.96.168301
  15. Braibanti, M., Vigolo, D. and Piazza, R., "Does Thermophoretic Mobility Depend on Particle Size?," Physical Review Letters, 100, 108303(2008). https://doi.org/10.1103/PhysRevLett.100.108303