참고문헌
- Almada-Lobo, F., "The Industry 4.0 Revolution and the Future of Manufacturing Execution Systems (MES)," J. Innov. Manag., 3(4), 16-21(2015). https://doi.org/10.24840/2183-0606_003.004_0003
- Maynard, A. D., "Navigating the Fourth Industrial Revolution," Nat. Nanotechnol., 10(12), 1005-1011(2015). https://doi.org/10.1038/nnano.2015.286
- Duballet, R., Baverel, O. and Dirrenberger, J. "Classification of Building Systems for Concrete 3D Printing," Autom. Constr., 83, 247-258(2017). https://doi.org/10.1016/j.autcon.2017.08.018
- Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C. and Spence, D. M., "Evalutation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences," Anal. Chem., 86(7), 3240-3253(2014). https://doi.org/10.1021/ac403397r
- Bhatia, S. N. and Ingber, D. E., "Microfluidic Organs-on-chips," Nat. Biotechnol., 32, 760-772(2014). https://doi.org/10.1038/nbt.2989
- Rupal, B. S., Garcia, E. A. Ayranci, C. and Qureshi, A. J., "3D Printed 3D-Microluidics: Recent Developments and Design Challenges," J. Interg. Design & Process Sci., 1-16(2018).
- Waheed, S., Cabot, J. M., Macdonald, N. P., Lewis, T., Guijt, R. M., Paull, B. and Breadmore, M. C., "3D Printed Microfluidic Devices: Enablers and Barriers," Lab Chip, 16(11), 1993-2013(2016). https://doi.org/10.1039/C6LC00284F
- Chen, C., Mehl, B. T., Munshi, A. S., Townsend, A. D., Spence, D. M. and Martin, R. S., "3D Printed Microfluidic Devices: Fabrication, Advantages and Limitations-a Mini Review," Anal. Methods, 8(31), 6005-6012(2016). https://doi.org/10.1039/C6AY01671E
- Ho, C. M., Ng, S. H., Li K. H. and Yoon, Y. H., "3D Printed Microfluidics for Biological Applications," Lab Chip, 15(18), 3627-3637(2015). https://doi.org/10.1039/C5LC00685F
- Sochol, R. D., Sweet, E., Glick, C. C., Venkatesh, S., Aventisyan, A., Ekman, K. F., Raulinaitis, A., Tsai, A., Wienkers, A., Korner, K., Hanson, K., Long, A., Hightower, B. J., Slatton, G., Burnett, D. C., Massey, T. L., Iwai, K., Lee, L. P., Pister, K. S. J. and Lin, L., "3D Printed Microfluidic Circuitry Via Multijet-based Additivie Manufacutring," Lab Chip, 16(4), 668-678(2016). https://doi.org/10.1039/C5LC01389E
- Kitson, P. J., Rosnes, M. H., Sans, V., Dragone, V. and Cronin, L., "Configurable 3D-Printed Millifluidic and Microfluidic 'lab on a chip' Reactionware Devices," Lab Chip, 12(18), 3267-3271(2012). https://doi.org/10.1039/c2lc40761b
- Im, D. J., Noh, J., Moon, D. and Kang, I. S., "Electrophoresis of a Charged Droplet in a Dielectric Liquid for Droplet Actuation," Anal. Chem., 83(8), 5168-5174(2011). https://doi.org/10.1021/ac200248x
- Im, D. J., Ahn, M. M., Yoo, B. S., Moon, D., Lee, D. W. and Kang, I. S., "Discrete Electrostatic Charge Transfer by the Electrophoresis of a Charged Droplet in a Dielectric Liquid," Langmuir, 28, 11656-11661(2012). https://doi.org/10.1021/la3014392
- Im, D. J., Yoo, B. S., Ahn, M. M., Moon, D. and Kang, I. S., "Digital Electrophoresis of Charged Droplets," Anal. Chem., 85, 4038-4044(2013). https://doi.org/10.1021/ac303778j
- Choi, C. Y. and Im, D. J., "Contact Charging and Electrophoresis of a Glassy Carbon Microsphere," Korean Chem. Eng. Res., 54(4), 568-573(2016). https://doi.org/10.9713/kcer.2016.54.4.568
- Yang, S. H. and Im, D. J., "Electrostatic Origins of the Positive and Negative Charging Difference in the Contact Charge Electrophoresis of a Water Droplet," Langmuir, 33(48), 13740-13748(2017). https://doi.org/10.1021/acs.langmuir.7b03281
- Im, D. J., Jeong, S.-N., Yoo, B. S., Kim, B., Kim, D.-P., Jeong, W.-J. and Kang, I. S., "Digital Microfluidic Approach for Efficient Electroporation with High Productivity: Transgene Expression of Microalgae without Cell Wall Removal," Anal. Chem., 87(13), 6592-6599(2015). https://doi.org/10.1021/acs.analchem.5b00725
- Im, D. J., "Delivery of Protein into Microalgae by the Digital Electroporation," Korean Chem. Eng. Res., 56(1), 79-84(2018). https://doi.org/10.9713/kcer.2018.56.1.79
- Im, D. J. and Jeong, S.-N., "Transfection of Jurkat T cells by Droplet Electroporation," Biochem. Eng. J., 122, 133-140(2017). https://doi.org/10.1016/j.bej.2017.03.010
- Kurita, H., Takahashi, S., Asada, A., Matsuo, M., Kishikawa, K., Mizuno, A., Numano, R., "Novel Parallelized Electroporation by Electrostatic Manipulation of a Water-in-Oil Droplet as a Microreactor," PLOS ONE, 10(12), e0144254(2015). https://doi.org/10.1371/journal.pone.0144254
- Kim, Y. H., Kwon, S. G., Bae, S. J., Park, S. J., Im, D. J., "Optimization of the Droplet Electroporation Method for Wild Type Chlamydomonas Reinhardtii Transformation," Bioelectrochemistry, 126, 29-37(2019). https://doi.org/10.1016/j.bioelechem.2018.11.010
- Yoo, B. S., Im, D. J., Ahn, M. M., Park, S. J., Kim, Y. H., Um, T. W., and Kang, I. S., "A Continuous Droplet Electroporation System for High Throughput Processing," Analyst, 143(23), 5785-5791(2018). https://doi.org/10.1039/C8AN01259H
- Kim, Y. H. and Im, D. J., "Control of the Culture Conditions of Chlamydomonas Reinhardtii for Efficient Delivery of Exogenous Materials in Electroporation," Algal Research, 35, 388-394(2018). https://doi.org/10.1016/j.algal.2018.09.010
- Gao, H., Kaweesa, D. V., Moore, J. and Meisel, N.A., "Investigating the Impact of Acetone Vapor Smoothing on the Strength and Elongation of Printed ABS Parts," JOM, 69(3), 580-585(2017). https://doi.org/10.1007/s11837-016-2214-5
- Prajitno, D. H., Maulana, A. and Syarif, D. G., "Effect of Surface Roughness on Contact Angle Measurement of Nanofluid on Surface of Stainless Steel 304 by Sessile Drop Method," J. Phys.: Conference Series, 739, 012029(2016). https://doi.org/10.1088/1742-6596/739/1/012029