DOI QR코드

DOI QR Code

악성 흑색종 환자에서 시행한 F-18 Fluorodeoxyglucose PET/CT의 지방 조직 및 골수의 영상 파라메터들이 예후에 미치는 영향 평가

Prognostic Significance of the Imaging Parameters of Adipose Tissue and Bone Marrow on F-18 Fluorodeoxyglucose PET/CT in Patients with Malignant Melanoma

  • 이주하 (순천향대학교 천안병원 영상의학과) ;
  • 이상미 (순천향대학교 천안병원 핵의학과) ;
  • 김정은 (순천향대학교 천안병원 피부과)
  • Lee, Ju Ha (Department of Radiology, Soonchunhyang University Cheonan Hospital) ;
  • Lee, Sang Mi (Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital) ;
  • Kim, Jung Eun (Department of Dermatology, Soonchunhyang University Cheonan Hospital)
  • 투고 : 2018.12.18
  • 심사 : 2019.06.06
  • 발행 : 2019.11.01

초록

목적 골수와 지방 조직의 F-18 Fluorodeoxyglucose (이하 F-18 FDG) 섭취는 악성 종양에 대한 전신 염증을 반영한다고 알려져 있다. 본 연구는 악성 흑색종에서 F-18 FDG PET/CT상 골수의 FDG 섭취와 내장 및 피하 지방 조직의 특성이 가지는 예후적 가치에 대해 평가하였다. 대상과 방법 병리학적으로 악성 흑색종으로 진단받은 환자 중 FDG PET/CT를 시행한 33명의 환자들을 진료차트를 분석하여 후향적으로 포함하였다. 골수 대 간의 FDG 섭취 비, 부피, CT Hounsfield unit (이하 HU) 및 FDG PET/CT상 내장 및 피하 지방 조직의 mean standardized uptake value (이하 SUVmean)을 측정하고, 이 매개 변수들을 가지고 질병 무진행 생존율에 미치는 예후적 가치에 대해 평가하였다. 결과 병기 III~IV의 환자는 병기 I~II의 환자에 비해 내장 및 피하 지방 조직의 CT HU 및 SUVmean 정도가 더 높았으며, 내장 지방 조직의 부피는 더 적었다(p < 0.05). 생존 분석에서 내장 및 피하 지방 조직의 CT HU와 SUVmean, 그리고 골수 대 간 섭취 비는 악성 흑색종의 무진행 생존율과 의미 있는 관련성을 보였는데(p < 0.05), 두 지방 조직의 CT HU 및 SUVmean이 높을수록, 골수 대 간 섭취 비가 높을수록 더 안 좋은 생존율을 보였다. 반면, 두 지방 조직의 부피는 악성 흑색종의 무진행 생존율과 유의한 연관성을 보이지 않았다(p > 0.05). 결론 내장 및 피하 지방 조직의 CT HU 및 SUVmean, 골수의 SUVmean은 악성 흑색종에서 무진행 생존율을 예측할 수 있는 예후적 정보를 제공할 수 있다.

Purpose Fluorodeoxyglucose (FDG) uptake of bone marrow (BM) and adipose tissue is known to reflect systemic inflammatory response to cancer cell. The objective of this study was to evaluate the prognostic value of F-18 FDG uptake of BM and determine characteristics of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) on PET/CT images in malignant melanoma. Materials and Methods We retrospectively reviewed 33 patients histopathologically diagnosed with malignant melanoma via FDG PET/CT staging. BM-to-liver uptake ratio (BLR), volume of VAT and SAT, CT Hounsfield unit (HU), and mean of standardized uptake value (SUVmean) of VAT and SAT on PET/CT were measured and prognostic values of these parameters for prediction of disease progression-free survival (DPFS) were evaluated. Results Patients with stage III-IV melanoma had higher CT HU and SUVmean for SAT and VAT but lower volume of VAT compared with patients at stage I-II (p < 0.05). Survival analysis, patients with high CT HU of VAT and SAT, high SUVmean of VAT and SAT, and high BLR showed worse DPFS (all p < 0.05), indicating significant association. However, volume of SAT or VAT failed to show significant association with DPFS (p > 0.05). Conclusion CT HU, SUVmean of SAT and VAT, and BLR provide prognostic information for DPFS in malignant melanoma.

키워드

과제정보

This work was supported by Soonchunhyang University Research Fund and the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (grant number: NRF-2018R1C1B5040061).

참고문헌

  1. Bandarchi B, Jabbari CA, Vedadi A, Navab R. Molecular biology of normal melanocytes and melanoma cells. J Clin Pathol 2013;66:644-648 https://doi.org/10.1136/jclinpath-2013-201471
  2. McCourt C, Dolan O, Gormley G. Malignant melanoma: a pictorial review. Ulster Med J 2014;83:103-110
  3. Mohr P, Eggermont AM, Hauschild A, Buzaid A. Staging of cutaneous melanoma. Ann Oncol 2009;20 Suppl 6:vi14-vi21 https://doi.org/10.1093/annonc/mdp256
  4. Ghuman S, Van Hemelrijck M, Garmo H, Holmberg L, Malmstrom H, Lambe M, et al. Serum inflammatory markers and colorectal cancer risk and survival. Br J Cancer 2017;116:1358-1365 https://doi.org/10.1038/bjc.2017.96
  5. Aino H, Sumie S, Niizeki T, Kuromatsu R, Tajiri N, Nakano M, et al. The systemic inflammatory response as a prognostic factor for advanced hepatocellular carcinoma with extrahepatic metastasis. Mol Clin Oncol 2016;5:83-88 https://doi.org/10.3892/mco.2016.879
  6. Stotz M, Gerger A, Eisner F, Szkandera J, Loibner H, Ress AL, et al. Increased neutrophil-lymphocyte ratio is a poor prognostic factor in patients with primary operable and inoperable pancreatic cancer. Br J Cancer 2013;109:416-421 https://doi.org/10.1038/bjc.2013.332
  7. Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta 2013;1831:1533-1541 https://doi.org/10.1016/j.bbalip.2013.02.010
  8. Parekh N, Chandran U, Bandera EV. Obesity in cancer survival. Annu Rev Nutr 2012;32:311-342 https://doi.org/10.1146/annurev-nutr-071811-150713
  9. Demark-Wahnefried W, Platz EA, Ligibel JA, Blair CK, Courneya KS, Meyerhardt JA, et al. The role of obesity in cancer survival and recurrence. Cancer Epidemiol Biomarkers Prev 2012;21:1244-1259 https://doi.org/10.1158/1055-9965.EPI-12-0485
  10. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008;371:569-578 https://doi.org/10.1016/S0140-6736(08)60269-X
  11. Lee JW, Na JO, Kang DY, Lee SY, Lee SM. Prognostic significance of FDG uptake of bone marrow on PET/CT in patients with non-small-cell lung cancer after curative surgical resection. Clin Lung Cancer 2017;18:198-206 https://doi.org/10.1016/j.cllc.2016.07.001
  12. Lee JW, Jeon S, Mun ST, Lee SM. Prognostic value of fluorine-18 fluorodeoxyglucose uptake of bone marrow on positron emission tomography/computed tomography for prediction of disease progression in cervical cancer. Int J Gynecol Cancer 2017;27:776-783 https://doi.org/10.1097/IGC.0000000000000949
  13. Lee JW, Lee MS, Chung IK, Son MW, Cho YS, Lee SM. Clinical implication of FDG uptake of bone marrow on PET/CT in gastric cancer patients with surgical resection. World J Gastroenterol 2017;23:2385-2395 https://doi.org/10.3748/wjg.v23.i13.2385
  14. Van de Wiele C, Van Vlaenderen M, D'Hulst L, Delcourt A, Copin D, De Spiegeleer B, et al. Metabolic and morphological measurements of subcutaneous and visceral fat and their relationship with disease stage and overall survival in newly diagnosed pancreatic adenocarcinoma : Metabolic and morphological fat measurements in pancreatic adenocarcinoma. Eur J Nucl Med Mol Imaging 2017;44:110-116 https://doi.org/10.1007/s00259-016-3525-z
  15. Neagu M, Constantin C, Dumitrascu GR, Lupu AR, Caruntu C, Boda D, et al. Inflammation markers in cutaneous melanoma-edgy biomarkers for prognosis. Discoveries 2015;3:e38 https://doi.org/10.15190/d.2015.30
  16. Fang S, Wang Y, Sui D, Liu H, Ross MI, Gershenwald JE, et al. C-reactive protein as a marker of melanoma progression. J Clin Oncol 2015;33:1389-1396 https://doi.org/10.1200/JCO.2014.58.0209
  17. Hayes AJ, Larkin J. BMI and outcomes in melanoma: more evidence for the obesity paradox. Lancet Oncol 2018;19:269-270 https://doi.org/10.1016/S1470-2045(18)30077-9
  18. Fang S, Wang Y, Dang Y, Gagel A, Ross MI, Gershenwald JE, et al. Association between body mass index, Creactive protein Levels, and melanoma patient outcomes. J Invest Dermatol 2017;137:1792-1795 https://doi.org/10.1016/j.jid.2017.04.007
  19. Sergentanis TN, Antoniadis AG, Gogas HJ, Antonopoulos CN, Adami HO, Ekbom A, et al. Obesity and risk of malignant melanoma: a meta-analysis of cohort and case-control studies. Eur J Cancer 2013;49:642-657 https://doi.org/10.1016/j.ejca.2012.08.028
  20. Zer A, Domachevsky L, Rapson Y, Nidam M, Flex D, Allen AM, et al. The role of 18F-FDG PET/CT on staging and prognosis in patients with small cell lung cancer. Eur Radiol 2016;26:3155-3161 https://doi.org/10.1007/s00330-015-4132-2
  21. Perng P, Marcus C, Subramaniam RM. 18F-FDG PET/CT and melanoma: staging, immune modulation and mutation-targeted therapy assessment, and prognosis. AJR Am J Roentgenol 2015;205:259-270 https://doi.org/10.2214/AJR.14.13575
  22. Tan TH, Boey CY, Lee BN. Role of pre-therapeutic 18F-FDG PET/CT in guiding the treatment strategy and predicting prognosis in patients with esophageal carcinoma. Asia Ocean J Nucl Med Biol 2016;4:59-65
  23. Kwon HW, Lee SM, Lee JW, Oh JE, Lee SW, Kim SY. Association between volume and glucose metabolism of abdominal adipose tissue in healthy population. Obes Res Clin Pract 2017;11:133-143 https://doi.org/10.1016/j.orcp.2016.12.007
  24. Murata Y, Kubota K, Yukihiro M, Ito K, Watanabe H, Shibuya H. Correlations between 18F-FDG uptake by bone marrow and hematological parameters: measurements by PET/CT. Nucl Med Biol 2006;33:999-1004 https://doi.org/10.1016/j.nucmedbio.2006.09.005
  25. Inoue K, Goto R, Okada K, Kinomura S, Fukuda H. A bone marrow F-18 FDG uptake exceeding the liver uptake may indicate bone marrow hyperactivity. Ann Nucl Med 2009;23:643-649 https://doi.org/10.1007/s12149-009-0286-9
  26. Bural GG, Torigian DA, Chen W, Houseni M, Basu S, Alavi A. Increased 18F-FDG uptake within the reticuloendothelial system in patients with active lung cancer on PET imaging may indicate activation of the systemic immune response. Hell J Nucl Med 2010;13:23-25
  27. Van Kruijsdijk RC, Van der Wall E, Visseren FL. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev 2009;18:2569-2578 https://doi.org/10.1158/1055-9965.EPI-09-0372
  28. Okumura T, Ohuchida K, Sada M, Abe T, Endo S, Koikawa K, et al. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells. Oncotarget 2017;8:18280-18295 https://doi.org/10.18632/oncotarget.15430
  29. Lee JW, Lee SM, Chung YA. Prognostic value of CT attenuation and FDG uptake of adipose tissue in patients with pancreatic adenocarcinoma. Clin Radiol 2018;73:1056.e1-1056.e10 https://doi.org/10.1016/j.crad.2018.07.094
  30. Murphy RA, Register TC, Shively CA, Carr JJ, Ge Y, Heilbrun ME, et al. Adipose tissue density, a novel biomarker predicting mortality risk in older adults. J Gerontol A Biol Sci Med Sci 2014;69:109-117 https://doi.org/10.1093/gerona/glt070
  31. Veld J, Vossen JA, De Amorim Bernstein K, Halpern EF, Torriani M, Bredella MA. Adipose tissue and muscle attenuation as novel biomarkers predicting mortality in patients with extremity sarcomas. Eur Radiol 2016;26:4649-4655 https://doi.org/10.1007/s00330-016-4306-6
  32. Yoo ID, Lee SM, Lee JW, Baek MJ, Ahn TS. Usefulness of metabolic activity of adipose tissue in FDG PET/CT of colorectal cancer. Abdom Radiol (NY) 2018;43:2052-2059 https://doi.org/10.1007/s00261-017-1418-7
  33. Amjadi F, Javanmard SH, Zarkesh-Esfahani H, Khazaei M, Narimani M. Leptin promotes melanoma tumor growth in mice related to increasing circulating endothelial progenitor cells numbers and plasma NO production. J Exp Clin Cancer Res 2011;30:21 https://doi.org/10.1186/1756-9966-30-21
  34. Oba J, Wei W, Gershenwald JE, Johnson MM, Wyatt CM, Ellerhorst JA, et al. Elevated serum leptin levels are associated with an increased risk of sentinel lymph node metastasis in cutaneous melanoma. Medicine (Baltimore) 2016;95:e3073 https://doi.org/10.1097/MD.0000000000003073
  35. Lavie CJ, De Schutter A, Patel DA, Milani RV. Body composition and fitness in the obesity paradox--body mass index alone does not tell the whole story. Prev Med 2013;57:1-2 https://doi.org/10.1016/j.ypmed.2013.03.010
  36. Ma J, Kuzman J, Ray A, Lawson BO, Khong B, Xuan S, et al. Neutrophil-to-lymphocyte Ratio (NLR) as a predictor for recurrence in patients with stage III melanoma. Sci Rep 2018;8:4044 https://doi.org/10.1038/s41598-018-22425-3