
디지털산업정보학회 논문지 제15권 제3호-2019년 9월

http://dx.doi.org/10.17662/ksdim.2019.15.3.101

디지털산업정보학회 논문지 101

Ⅰ. 서론
1)

The Database System (hereinafter called "DBS")

should provide a means to ensure certain users or

group of users can access selected portions of a

database. In addition, the DBS includes database

security and authorization subsystems responsible

* Dept of Smart Software, Korea Polytechnics (Corresponding
Author)

for maintaining the security portion of the database

(e.g., specific data files and records)[1]. DBS

administration is performed on root or elevated

system accounts, which is necessary to protect the

database environment by restricting the run

authority.

The Dualistic Account Separation Model

(DASM)[2] uses only the owner account (a database

user who creates objects), which has the authority

A Study on Database Access Control

using Least-Privilege Account Separation Model

Jang Youngsu*

최소 권한 계정 분리 모델을 이용한 데이터베이스 엑세스 제어 연구

장 영 수
<Abstract>

In addition to enabling access, database accounts play a protective role by defending the
database from external attacks. However, because only a single account is used in the
database, the account becomes the subject of vulnerability attacks. This common practice is
due to the lack of database support, large numbers of users, and row-based database
permissions. Therefore if the logic of the application is wrong or vulnerable, there is a risk
of exposing the entire database. In this paper, we propose a Least-Privilege Account
Separation Model (LPASM) that serves as an information guardian to protect the database
from attacks. We separate database accounts depending on the role of application services.
This model can protect the database from malicious attacks and prevent damage caused by
privilege escalation by an attacker. We classify the account control policies into four
categories and propose detailed roles and operating plans for each account.

Key Words : Database Account Separation, Information Guardian, Account Design and Control
Policy

A Study on Database Access Control using Least-Privilege Account Separation Model

102 제15권 제3호

to create and modify the schema, as the application

service account, which serves the application.

However, this model has a vulnerability that can

expose sensitive personal information because there

is no separate access control constraint for accessing

the schema when an application is exposed to

external attacks (e.g., blind injection). This common

practice is due to lack of database support for

connection pooling, large number of users, and

row-based database permissions[3]. Moreover, if the

logic of the application is wrong or vulnerable,

there is a risk of exposing the entire database.

Therefore, the owner account should be kept

separate, because it should control the database

account to protect the database from a malicious

attacker. Database account separation can limit the

privileges of the potentially buggy application logic.

In this paper, we propose a least-privilege

account separation approach to protect the database

against attackers. The contributions of this paper are

as follows:

1) A business role-based account separation

model that can detect access control

vulnerabilities.

2) An implementation of our analysis which

defines and designates the roles and

permissions of each account with four

categories.

3) An evaluation of our approach on real-world

relational database. Our approach is able to

prevent vulnerabilities before program

execution.

The remainder of this paper is organized as

follows: Section II reviews related works, Section III

details our system model, Section IV describes the

implementation, Section V presents our evaluation,

and finally, Section Ⅵ presents our conclusions.

Ⅱ. Related works
Colombo and Ferrari[4] focused on isolating web

application users from each other. Using their

approach, application access is limited according to

the identity of the user logged in over Secure

Sockets Layer (SSL). The separation is implemented

in the application to prevent one user from

accessing another user’s data. However, our

approach enables fine-grained access control for

multiple modules of a program, which can work on

behalf of one or more users.

Moon and Jeong[5] proposed using a user’s

credentials to forward commands to the database

only if the user is logged in. This includes data

stored for the purpose of running the application

itself, as well as data that users can access.

However, they only consider the use-case of secure

application servers running buggy applications.

However, our approach is that account separation is

performed to prevent one user from accessing

another user's data.

Guarnieri et al.[6] proposed a method in which

each module in a program explicitly recommends

the database access required to do the job. This

allows programmers and code reviewers to better

understand how a given module affects or relies on

a particular dataset in the database. However, this

method may incur additional overhead due to the

need to modify database access control when

changing program modules. Our approach is

A Study on Database Access Control using Least-Privilege Account Separation Model

디지털산업정보학회 논문지 103

business role-based account separation, which

reduces the manual effort required to modify the

application.

Ⅲ. System model
The method of enforcing discretionary access

control in the DBS is based on the granting and

revoking of privileges[7]. Our approach provides

selective access to each relation in the database

based on specific accounts. Therefore, we can

control the privilege to access each individual

relation or object in the database.

3.1 Least-privilege account separation model
We divide database accounts into four categories

based on the business roles. Fig. 1 illustrates our

DBS Least-Privilege Account Separation Model

(LPASM). The DBS accounts are separated into the

owner, application service, interworking, and

service accounts. The dotted line arrow in Fig. 1

represents limited data access and the solid line

arrow represents normal data access. The

application service account and interworking

account share data with each other. This signifies

data interworking between the application and

external systems.

The owner account generates schema from the

DBS and has all privileges on the schema. In

contrast, general users can only access the

access-permitted schema according to the granted

access privilege roles. The application service

account and interworking account are for internal

and external users, respectively. For these accounts,

access privileges on the schema are granted by the

owner account to give internal and external users

access to the database through application

programs. The service account is granted limited

access to only the database schema and is used for

statistical databases, such as the On-Line Analytical

Process (OLAP) and census.

3.2 Account management policy
The LPASM manages DBS accounts through 1)

resource control and 2) access privilege.

3.2.1 Resource control

As part of the account security domain, system

resources can be limited to an account based on

permissions for Data Control Language (DCL), Data

Definition Language (DDL), and Data Manipulation

Language (DML)[8].

Owner accounts can use DCL, DDL, and DML

Fig. 1. DBS Least-Privilege Account Separation Model
(LPASM).

A Study on Database Access Control using Least-Privilege Account Separation Model

104 제15권 제3호

without any restrictions. The objects (e.g., tables,

views, procedures, etc.) that other accounts use are

generated and managed using DDL. The application

service account is used by many users. When this

account is granted DML permission by the owner

account, access to the tables, synonyms, and views

is possible. The system is implemented by setting a

buffer size that is impossible to use for batch data

processing in order to prevent unauthorized

processes[9]. This prevents unauthorized users or

persons from accessing the system itself as a whole

either to obtain information or to make changes.

The interworking account enables data

interchange between the internal database and the

external system. This account gains access to the

tables, synonyms, and views after being granted the

DML privilege by the owner account; however,

access to the schema is more restricted than that of

the application service account.

The service account is for statistical databases

and is granted the most limited DML privilege.

Specifically, it retrieves information from the

database using the SELECT query.

3.2.2 Access privilege

The LPASM enables the DBS to apply account

privileges. For example, an application account in

the database may need to be modified to operate

with access privileges. Modification of the database

account privileges is more likely to lead to

maintenance problems. However, the LPASM

implementation presents an attractive option from a

different viewpoint. Protection from SQL

Injection Attacks (SQLIA) is applied to any

application that runs on a modified database[9].

This is a distinct advantage and may even be

preferable in certain practical situations. In addition,

the service account cannot access the objects and

relations used by the application service account

because it has the minimum access privilege role.

On the other hand, the owner account has the

Fig. 2. Simple bookstore real-world relational database.

A Study on Database Access Control using Least-Privilege Account Separation Model

디지털산업정보학회 논문지 105

maximum access role and can access all objects and

relations.

Ⅳ. Implementation
4.1 Simple relational database test-suite

Fig. 2 shows a simple bookstore real-world

relational database. Each book and delivery can

have one or more invoices, and each publisher and

author can have one or more books. The “INO”

column shows the order serial number. Fig. 2 is

processed as follows:

(1) Relational Table schema: 5 tables

- {Book, Publisher, Author, Invoice,

Delivery}

(2) Explicit referential integrity relation:

- {Invoice.BID, Book.BID}

(3) Implicit referential integrity relation:

- ({Publisher.PNO, Book.PNO},

{Author.ANO, Book.ANO},

{Invoice.DNO, Delivery.DNO})

(4) Table primary key columns:

- ({Book.BID}, {Published.PNO},

{Author.ANO}, {Invoice.INO},

{Delivery.DNO})

4.2 Definition of business roles
The real-world business roles for a simple

bookstore are illustrated in Fig. 3 (line arrow:

normal data access, dotted line: limited data access).

The customer can select books to order from the

bookstore application (Role1), place an order for the

books (Role2). The delivery service delivers the

ordered books to the customer (Role3). The

manager can check the list of orders and deliveries

according to the order date (Role4, Role5) and

manage the bookstore application (Role6). Therefore,

the customer, delivery personnel, and manager can

(a) customer subject.

(b) delivery service subject.

(c) manager subject (i).

(d) mamager subject (ii).
Fig. 3. Subjects to use a database table

A Study on Database Access Control using Least-Privilege Account Separation Model

106 제15권 제3호

be defined as subjects who can use the database

tables. Our simple real-world bookstore business

roles are summarized in Table 1.

4.3 Least-privilege account separation
We separate the simple real-world bookstore

database accounts based on business roles as

follows. TM represents a set of transactions from

each table:

(1) Owner account: Manager

- Related table list: {Book, Invoice,

Publisher, Author, Delivery}

- Normal data access table list: {Book,

Invoice, Publisher, Author, Delivery}

- Referential data access table list:

None

- Limited data access table list: None

- Shared target table list: {Book,

Invoice}

✔ TM(Book) = {Read, Insert,

Update, Delete}

✔ TM(Invoice) = {Read, Insert,

Update, Delete}

(2) Application service account: Customer

- Related table list: {Book, Invoice,

Publisher, Author}

- Normal data access table list: {Book,

Invoice}

- Referential data access table list:

{Publisher, Author}

- Limited data access table list: None

- Shared target table list: {Book,

Invoice}

✔ TM(Book) = {Read}

✔ TM(Invoice) = {Read, Insert}

(3) Interworking account: Delivery

- Related table list: {Book, Invoice}

- Normal data access table list: None

- Referential data access table list:

{Book}

- Limited data access table list:

{Invoice}

- Shared target table list: {Invoice}

✔ TM(Invoice) = {Read}

(4) Service account: Manager

- Related table list: {Book, Invoice,

Publisher, Author, Delivery}

- Normal data access table list: None

- Referential data access table list:

{Book, Publisher, Author, Delivery}

- Limited data access table list:

{Invoice}

- Shared target table list: {Invoice}

✔ TM(Invoice) = {Read}

Table 1. Simple real-world bookstore business roles
Business roles Description

Role 1
Customer user orders books in bookstore

application.

Role 2
The books selected by the customer user are

inserted in the INVOICE table.

Role 3
Delivery user service refers to ordered books

through an external system.

Role 4
Manager user may check the order list of books

by Odate.

Role 5
Manager user may check the order list of

delivery by Odate or lnumber.

Role 6 Manager user manages bookstore application.

A Study on Database Access Control using Least-Privilege Account Separation Model

디지털산업정보학회 논문지 107

Ⅴ. Evaluation
5.1 Empirical evaluation of the test-suite

To evaluate the LPASM verification, we used

three empirical test-suites. Our target test-suite is a

small relational database with a functionality that

can be separated into relatively dependent modules.

The following describes the code bases of these

projects: JForum, Drupal, and WordPress. The

following describes the code bases of these projects:

(1) JForum is a Java open source program to

message board system that runs several

forums. Designed as a separate set of

modules, it is a good candidate for account

separation. We retrofit JForum’s “posts”

module ver.2.1.8 to work with LPASM. It is

the most privileged module that requires full

access to the database tables.

(2) Drupal is a open source content management

program written in PHP. Version 5.10 of the

"Brilliant Gallery“ plugin could allow an

attacker to retrieve the administrative

password of a Drupal-based website.

(3) WordPress is a open source content

management program based on PHP and

MySQL database. “GNU Commerce” plugin of

WordPress ver.2.7 has a SQLIA that allows

an attacker to access the use account

database.

Table 2 summarizes the results of evaluation

using the open-source test suite. The application

size is given in the LOC. The third column shows

how many lines of code were added and altered.

We evaluated JForum for "Access privilege

prevention" and Drupal and WordPress for

"Vulnerability detection", respectively. The final two

columns shows that Access privilege prevention

and Vulnerability detection result by our LPASM.

Table 4 presents an example of a SQLIA for

WordPress. It is possible with the SQLIA through

{$sod} in the order by clause on line 9.

Ⅵ. Conclusion
This paper proposes a database LPASM that can

1. if (!$sst) {
2. if ($board[‘bo_sort_field’]) {
3. ...
4. }
5. } else {
6. ...
7. }
8. if ($sst) {
9. $sql_order = “ order by {$sst} {$sod}”;

10. }

Fig. 4. Example of SQLIA for order by clause of WordPress

Table 2. Results of the evaluation using the empirical test-suite
Application Size

(LOC) Modifications LPASM
Access privilege prevention Vulnerability detection

JForum 219 91 Success N/A

Drupal 518 32 N/A Success

WordPress 1,092 40 N/A Success

A Study on Database Access Control using Least-Privilege Account Separation Model

108 제15권 제3호

be applied to extend the security in most database

systems. We separate database accounts according

to the business role to protect the database from

attacks and prevent damage caused by the elevation

of privileges by an attacker. In addition, we

separate the account management policies into four

categories and proposed detailed roles and

operational plans for each account. Our approach

provides evidence that it is possible to successfully

design retrofitting techniques that guarantee

security in legacy applications and eliminate

well-known attacks.

References
[1] S.M. Groomer and U.S. Murthy, “Continuous

auditing of database applications: An

embedded audit module approach,” In

Continuous Auditing: Theory and Application,

2018, pp.105-124.

[2] Separation of system resources guideline, UC

Berkely Information Security Office,

https://security.berkeley.edu/separation-system

-resources-guideline

[3] M. Malik and T. Patel, “Database security

attacks and control methods,” International

Journal of Information, Vol.6, 2016, pp.175-183.

[4] P. Colombo and E. Ferrari, “Enforcement of

purpose based access control within relational

database management systems,” IEEE

Transactions on Knowledge and Data

Engineering, Vol.26, No.11, 2014, pp.2703-2716.

[5] SU. Moon and YJ. Jeong, “System and method

for authentication,” DC: U.S. Patent and

Trademark Office, 2016.

[6] M. Guarnieri, S. Marinovic, and D. Basin, D.

“Strong and provably secure database access

control,” In 2016 IEEE Euro S&P, 2016,

pp.163-178.

[7] CK. Wee and R. Nayak, R. “A novel database

exploitation detection and privilege control

system using data mining,” In Modern

Approaches for Intelligent Information and

Database Systems, 2018, pp.505-516.

[8] N. Batra and H. Aggarwal, “Autonomous

multilevel policy based security configuration in

distributed database,” International Journal of

Computer Science Issues(IJCSI), Vol.9, No.6,

2012, pp.170-176.

[9] YS. Jang and JY. Choi, “Detecting SQL injection

attacks using query result size,” Comput. Sec.,

Vol. 44, 2014, pp.104-118.

[10] JS. Park and CS. Kim, “Research trends analysis

of big data: focused on the topic modeling,”

The korea society of digital industry and

information management, Vol.15, No.1, 2019,

pp.1-7.

[11] ES. Cho, SY. Min, SH. Kim, and BG. Kim,

“Development of extracting system for meaning

subject related social topic using deep

learning,” The korea society of digital industry

and information management, Vol.14, No.4,

2019, pp.35-45.

A Study on Database Access Control using Least-Privilege Account Separation Model

디지털산업정보학회 논문지 109

▪저자소개▪

장 영 수
Jang Youngsu

2017년 12월~현재
한국폴리텍대학
스마트소프트웨어학과 조교수

2019년 8월 고려대학교 컴퓨터학과(공학박사)
2011년 2월 고려대학교

소프트웨어학과(공학석사)
관심분야 : 정보보안, 보안코딩,

시큐어프로그래밍
E-mail : jyskkh@naver.com

논문접수일 :
수 정 일 :
게재확정일 :

2019년 8월 20일
2019년 9월 8일
2019년 9월 11일

