DOI QR코드

DOI QR Code

80 km × 56 spans의 초장거리 전송 링크에서 왜곡된 WDM 채널의 보상

Compensation of the Distorted WDM Channels in Ultra-long Transmission Link of 80 km × 56 Spans

  • 이성렬 (목포해양대학교 항해정보시스템학부)
  • Lee, Seong-Real (Division of Navigational Information System, Mokpo National Maritime University)
  • 투고 : 2019.05.14
  • 심사 : 2019.06.25
  • 발행 : 2019.06.30

초록

분산 제어와 광 위상 공액이 결합된 초장거리 광전송 링크의 구조를 제안하였다. 전체 전송 링크는 80 km (단일 모드 광섬유 span) ${\times}$ 56 fiber span으로 구성된다. 왜곡된 파장 분할 다중 채널을 보상하기 위하여 각 fiber span의 단일 모드 광섬유 길이와 중계 구간 당 잉여 분산을 점진적으로 증가/감소시키는 인위적 분포 구조를 채택하였다. 다른 선행 연구에서 제안된 인위적 분포는 fiber span이 많아질수록 보상 효과가 줄어들 수 있기 때문에 인위적 분포 패턴을 9개의 fiber span 마다 반복시키는 구조를 분산 제어와 광 위상 공액 링크에 적용하였다. 시뮬레이션 결과 제안된 4개의 분포 패턴 중 특정한 인위적 분포 패턴이 적용된 링크를 사용하면 기존에 제안되었던 반복이 없는 인위적 분포에 비해 왜곡된 WDM 채널의 보상 효과가 다소 크게 나타나는 것을 확인하였다.

The configuration of ultra-long optical transmission link with dispersion management and optical phase conjugation is proposed. The whole transmission link consist of 80 km (single mode fiber span) ${\times}$ 56 fiber spans. The artificial distribution of single mode fibers' lengths and residual dispersions in fiber spans, which are gradually increased/decreased as the span number is increased, is adopted to compensate for the distorted wavelength division multiplexed channels. Since the compensation effect through the artificial distribution in the previous researches is expected to decrease as the number of fiber spans are increased, three-time repetition of the artificial distribution patterns at intervals of 9 fiber spans applied into the link with dispersion management and optical phase conjugation is proposed. From the simulation results, it is confirmed that the compensation in the link configured by the special distribution pattern among 4 proposed patterns is slightly improved than the link configured by the conventional method, which is designed by the repeat-less distribution pattern.

키워드

참고문헌

  1. M. Y. Hamza, S. Tariq, and L. Chen, "Dispersion in the presence of nonlinearity in optical fiber communications," in Proceedings of 2006 10th IEEE Singapore International Conference on Communication Systems, Singapore, pp. 1-5, 2006.
  2. M. F. Uddin, A. B. M. N. Doulah, A. B. M. I. Hossain, M. Z. Alam, and M. N. Islam, "Reduction of four-wave mixing effect in an optical wavelength-division multiplexed system by utilizing different channel spacing and chromatic dispersion schemes," Optical Engineering, Vol. 42, No. 9, pp. 2761-2767, 2003. https://doi.org/10.1117/1.1597887
  3. M. Wu, W. I. Way, "Fiber nonlinearity limitations in ultra-dense WDM systems", Journal of Lightwave Technology, Vol. 22, No. 6, pp. 1483-1498, 2004. https://doi.org/10.1109/JLT.2004.829222
  4. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Francisco:CA, Academic Press, 2001.
  5. P. M. Lushnikov, “Oscillating tails of a dispersion-managed soliton,” Journal of the Optical Society of America B, Vol. 21, No. 11, pp. 1913-1918, 2004. https://doi.org/10.1364/JOSAB.21.001913
  6. M. Suzukiand N. Edagawa, “Dispersion-managed high-capacity ultra-long-haul transmission,” Journal of Lightwave Technology, Vol. 21, No. 4, pp. 916-929, 2003. https://doi.org/10.1109/JLT.2003.810098
  7. A. Yariv, D. Feketa, and D. M. pepper, "Compensation for channel dispersion by nonlinear optical phase conjugation," Optics Letters, Vol. 4, pp. 52-54, 1979. https://doi.org/10.1364/OL.4.000052
  8. M. Morshed, L. B. Du, and A. J. Lowery, “Mid-span spectral inversion for coherent optical OFDM systems: fundamental limits to performance,” Journal of Lightwave Technology, Vol. 31, No. 1, pp. 58-66, 2013. https://doi.org/10.1109/JLT.2012.2227942
  9. M. A. Talukder, and M. N. Islam, "Performance of bi-end compensation in a wavelength-division multiplexed system considering the effect of self phase modulation," Optical Engineering, Vol. 44, No. 11, pp. 115005-1-115055-6, 2005. https://doi.org/10.1117/1.2128631
  10. S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," Journal of Lightwave Technology, Vol. 14, No. 3, pp 243-248, 1996. https://doi.org/10.1109/50.485581
  11. A. Chowdhury and R.-J.Essiambre, “Optical phase conjugation and pseudolinear transmission,” Optics Letter, Vol. 29, No. 10, pp. 1105-1107, 2004. https://doi.org/10.1364/OL.29.001105
  12. P. Minzioni and A. Schiffini, “Unifying theory of compensation techniques for intrachannel nonlinear effects,” Optical Express, Vol. 13, No. 21, pp. 8460-8468, 2005. https://doi.org/10.1364/OPEX.13.008460
  13. S. R. Lee, "Effects of deviations of RDPS on the compensation for distorted WDM channels in dispersion-managed optical transmission links of random distribution schemes," Journal of Advanced Navigation Technology, Vol. 19, No. 2. pp. 147-152, Apr. 2015. https://doi.org/10.12673/jant.2015.19.2.147
  14. S. R. Lee, "Compensation of the distorted WDM channels depending on the control position of net residual dispersion in dispersion-managed optical link with the randomly distributed SMF lengths and RDPS," Journal of Advanced Navigation Technology, Vol. 21, No. 2, pp. 187-192, Apr. 2017. https://doi.org/10.12673/jant.2017.21.2.187
  15. S. R. Lee, "Dispersion-managed optical links with the ascending or descending of SMF lengths and RDPS as the fiber span is increased," Journal of Advanced Navigation Technology, Vol. 20, No. 5, pp. 462-467, Oct. 2016. https://doi.org/10.12673/jant.2016.20.5.462
  16. S. R. Lee, “Dispersion managed optical transmission links with an artificial distribution of the SMF length and residual dispersion per span,” Journal of Information and Communication Convergence Engineering, Vol. 12, No. 2, pp. 75-82, 2014. 6. 30 https://doi.org/10.6109/jicce.2014.12.2.075
  17. N. Kikuchi and S. Sasaki, "Analytical evaluation technique of self-phase modulation effect on the performance of cascaded optical amplifier systems," Journal of Lightwave Technology, Vol. 13, No. 5, pp. 868-878. 1995. https://doi.org/10.1109/50.387804