DOI QR코드

DOI QR Code

Mitochondrial Dysfunction and Cancer

미토콘드리아 기능 이상과 암

  • Han, Yu-Seon (Department of Molecular Biology, College of Natural Science, Pusan National University) ;
  • Jegal, Myeong-Eun (Department of Molecular Biology, College of Natural Science, Pusan National University) ;
  • Kim, Yung-Jin (Department of Molecular Biology, College of Natural Science, Pusan National University)
  • Received : 2019.07.30
  • Accepted : 2019.09.11
  • Published : 2019.09.30

Abstract

The mitochondria is the major cellular organelle of energy metabolism for the supply of cellular energy; it also plays an important role in controlling calcium regulation, reactive oxygen species (ROS) production, and apoptosis. Mitochondrial dysfunction causes various diseases, such as neurodegenerative diseases, Lou Gehrig's disease, cardiovascular disease, mental disorders, diabetes, and cancer. Most of the diseases are age-related diseases. In this review, we focus on the roles of mitochondrial dysfunction in cancer. Mitochondrial dysfunction induces carcinogenesis and is found in many cancers. The factors that cause mitochondrial dysfunction differ depending on the types of carcinoma, and those factors could cause cancer malignancy, such as resistance to therapy and metastasis. Mitochondrial dysfunction is caused by a lack of mitochondria, an inability to provide key substances, or a dysfunction in the ATP synthesis machinery. The main factor associated with cancer malignancy is mtDNA depletion. Mitochondrial dysfunction would leads to malignancy through changes in molecular activity or expression, but it is not known in detail which changes lead to cancer malignancy. In order to explore the relationship between mitochondrial dysfunction and cancer malignancy in detail, mitochondria dysfunctional cell lines are constructed using chemical methods such as EtBr treatment or gene editing methods, including shRNA and CRISPR/Cas9. Those mitochondria dysfunctional cell lines are used in the study of various diseases caused by mitochondrial dysfunction, including cancer.

미토콘드리아는 세포 에너지 공급을 위한 에너지 대사의 주요 세포 소기관으로 칼슘 조절, 활성 산소(ROS) 생성, 세포 사멸(apoptosis)을 조절하는데도 중요한 역할을 한다. 이러한 미토콘드리아에 발생한 기능 이상은 신경퇴행질환, 루게릭병, 심혈관계 질환, 정신 질환, 당뇨, 암과 같은 다양한 질병과 연관이 있다. 미토콘드리아 기능 이상 관련 질병들은 노화와 관련된 질병이 주를 차지하며, 이 논문에서는 그 중에서도 암에 초점을 맞춰 서술하고자 한다. 미토콘드리아 기능 이상은 발암을 유도하며, 많은 암 종에서 발견된다. 암종에 따라 미토콘드리아 기능 이상을 일으키는 요인들이 다르며, 이러한 변화는 치료 내성, 전이와 같은 암 악성화도 유발한다. 미토콘드리아 기능 이상의 요인으로는 미토콘드리아 수 부족, 주요 물질 제공 불능, ATP 합성 기능 이상 등이 존재하나, 암 발병과 악성화에 영향을 미치는 주요 원인으로 미토콘드리아 DNA (mtDNA)의 감소(depletion)를 들 수 있다. 미토콘드리아 기능 이상은 분자 활성 변화 혹은 발현 변화를 통해 암 악성화를 일으키나, 어떠한 변화가 암 악성화를 야기하는지 구체적으로 알려진 바가 없다. 미토콘드리아 기능 이상과 암의 상관관계는 대부분 미토콘드리아 기능 이상 세포를 이용하여 연구하는데, 그 제작 방법으로는 EtBr에 의한 화학적 방법과 shRNA, Crispr/Cas9과 같은 유전자 수선 (gene editing) 방법 등이 있다. 이러한 기법으로 제작된 미토콘드리아 기능 이상 세포주는 암을 비롯한 미토콘드리아 기능 이상에 의한 다양한 질병 연구에 이용되고 있다.

Keywords

References

  1. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R. and Young, I. G. 1981. Sequence and organization of the human mitochondrial genome. Nature 290, 457-465. https://doi.org/10.1038/290457a0
  2. Ashida, H., Mimuro, H., Ogawa, M., Kobayashi, T., Sasakawa, C., Sanada, T. and Kim, M. 2011. Cell death and infection: A double-edged sword for host and pathogen survival. J. Cell. Biol. 195, 931-942. https://doi.org/10.1083/jcb.201108081
  3. Aw, T. Y. and Jones, D. P. 1989. Nutrient supply and mitochondrial function. Annu. Rev. Nutr. 9, 229-251. https://doi.org/10.1146/annurev.nu.09.070189.001305
  4. Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S. and Moraes, C. T. 2013. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 19, 1111-1113. https://doi.org/10.1038/nm.3261
  5. Bell, E. L., Emerling, B. M., Ricoult, S. J. and Guarente, L. 2011. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30, 2986-2996. https://doi.org/10.1038/onc.2011.37
  6. Bohovych, I. and Khalimonchuk, O. 2016. Sending out an SOS: mitochondria as a signaling hub. Front. Cell. Dev. Biol. 4, 109.
  7. Boland, M. L., Chourasia, A. H. and Macleod, K. F. 2013. Mitochondrial dysfunction in cancer. Front. Oncol. 3, 1-28. https://doi.org/10.3389/fonc.2013.00001
  8. Bralley, J. and Lord, R. 2001. Laboratory Evaluations in Molecular Medicine: Nutrients, Toxicants, and Cell Regulators, 175-208, Institute for Advances in Molecular Medicine: Norcross, GA, USA
  9. Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W. and Sheu, S. S. 2004. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell. Physiol. 287, C817-833. https://doi.org/10.1152/ajpcell.00139.2004
  10. Butow, R. A. and Avadhani, N. G. 2004. Mitochondrial signaling: the retrograde response. Mol. Cell. 14, 1-15. https://doi.org/10.1016/S1097-2765(04)00179-0
  11. Castro-Vega, L. J., Buffet, A., De Cubas, A. A., Cascon, A., Menara, M., Khalifa, E., Amar, L., Azriel, S., Bourdeau, I., Chabre, O., Curras-Freixes, M., Franco-Vidal, V., Guillaud- Bataille, M., Simian, C., Morin, A., Leton, R., Gomez-Grana, A., Pollard, P. J., Rustin, P., Robledo, M., Favier, J. and Gimenez-Roqueplo, A. P. 2014. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum. Mol. Genet. 23, 2440-2446. https://doi.org/10.1093/hmg/ddt639
  12. Chance, B., Sies, H. and Boveris, A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527-605. https://doi.org/10.1152/physrev.1979.59.3.527
  13. Chandel, N. S. 2015. Evolution of Mitochondria as Signaling Organelles. Cell. Metab. 22, 204-206. https://doi.org/10.1016/j.cmet.2015.05.013
  14. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C. and Schumacker, P. T. 1998. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA. 95, 11715-11720. https://doi.org/10.1073/pnas.95.20.11715
  15. Chang, C. J., Yin, P. H., Yang, D. M., Wang, C. H., Hung, W. Y., Chi, C. W., Wei, Y. H. and Lee, H. C. 2009. Mitochondrial dysfunction-induced amphiregulin upregulation mediates chemo-resistance and cell migration in HepG2 cells. Cell. Mol. Life. Sci. 66, 1755-1765. https://doi.org/10.1007/s00018-009-8767-5
  16. Chatterjee, A., Mambo, E. and Sidransky, D. 2006. Mitochondrial DNA mutations in human cancer. Oncogene 25, 4663-4674. https://doi.org/10.1038/sj.onc.1209604
  17. Chitkara, D. K., Nurko, S., Shoffner, J. M., Buie, T. and Flores, A. 2003. Abnormalities in gastrointestinal motility are associated with diseases of oxidative phosphorylation in children. Am. J. Gastroenterol. 98, 871-877. https://doi.org/10.1111/j.1572-0241.2003.07385.x
  18. Cohen, B. H. and Gold, D. R. 2001. Mitochondrial cytopathy in adults: what we know so far. Cleve. Clin. J. Med. 68, 625-626, 629-642. https://doi.org/10.3949/ccjm.68.7.625
  19. Contreras, L., Drago, I., Zampese, E. and Pozzan, T. 2010. Mitochondria: the calcium connection. Biochim. Biophys. Acta. 1797, 607-618. https://doi.org/10.1016/j.bbabio.2010.05.005
  20. Copeland, W. C. and Longley, M. J. 2003. DNA polymerase gamma in mitochondrial DNA replication and repair. ScientificWorldJournal 3, 34-44. https://doi.org/10.1100/tsw.2003.09
  21. Cordero, M. D., de Miguel, M., Carmona-Lopez, I., Bonal, P., Campa, F. and Maria Moreno-Fernandez, A. 2010. Oxidative stress and mitochondrial dysfunction in fibromyalgia. Neuro. Endocrinol. Lett. 31, 169-173.
  22. Croteau, D. L. and Bohr, V. A. 1997. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem. 272, 25409-25412. https://doi.org/10.1074/jbc.272.41.25409
  23. Dan Dunn, J., Alvarez, L. A., Zhang, X. and Soldati, T. 2015. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox. Biol. 6, 472-485. https://doi.org/10.1016/j.redox.2015.09.005
  24. Degli Esposti, M. 2014. Bioenergetic evolution in proteobacteria and mitochondria. Genome Biol. Evol. 6, 3238-3251. https://doi.org/10.1093/gbe/evu257
  25. Desjardins, P., Frost, E. and Morais, R. 1985. Ethidium bromide- induced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Mol. Cell. Biol. 5, 1163-1169. https://doi.org/10.1128/MCB.5.5.1163
  26. Devine, M. J. and Kittler, J. T. 2018. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 19, 63-80. https://doi.org/10.1038/nrn.2017.170
  27. Diebold, L. and Chandel, N. S. 2016. Mitochondrial ROS regulation of proliferating cells. Free. Radic. Biol. Med. 100, 86-93. https://doi.org/10.1016/j.freeradbiomed.2016.04.198
  28. Du, X. L., Edelstein, D., Rossetti, L., Fantus, I. G., Goldberg, H., Ziyadeh, F., Wu, J. and Brownlee, M. 2000. Hyperglycemia- induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA. 97, 12222-12226. https://doi.org/10.1073/pnas.97.22.12222
  29. Duchen, M. R. 2004. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects. Med. 25, 365-451. https://doi.org/10.1016/j.mam.2004.03.001
  30. Fernandez, D. and Perl, A. 2009. Metabolic control of T cell activation and death in SLE. Autoimmun. Rev. 8, 184-189. https://doi.org/10.1016/j.autrev.2008.07.041
  31. Ferraresi, R., Troiano, L., Pinti, M., Roat, E., Lugli, E., Quaglino, D., Taverna, D., Bellizzi, D., Passarino, G. and Cossarizza, A. 2008. Resistance of mtDNA-depleted cells to apoptosis. Cytometry. A. 73, 528-537.
  32. Finley, L. W., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., Teruya-Feldstein, J., Moreira, P. I., Cardoso, S. M., Clish, C. B., Pandolfi, P. P. and Haigis, M. C. 2011. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19, 416-428. https://doi.org/10.1016/j.ccr.2011.02.014
  33. Gabaldon, T. and Huynen, M. A. 2004. Shaping the mitochondrial proteome. Biochim. Biophys. Acta. 1659, 212-220. https://doi.org/10.1016/j.bbabio.2004.07.011
  34. Galluzzi, L., Kepp, O. and Kroemer, G. 2012. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell. Biol. 13, 780-788. https://doi.org/10.1038/nrm3479
  35. Gammage, P. A., Moraes, C. T. and Minczuk, M. 2017. Mitochondrial genome engineering: The revolution may not be CRISPR-Ized. Trends Genet. 34, 101-110. https://doi.org/10.1016/j.tig.2017.11.001
  36. Gonzalez-Sanchez, E., Marin, J. J. G. and Perez, M. J. 2014. The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion. Mol. Pharm. 11, 1856-1868. https://doi.org/10.1021/mp400732p
  37. Gray, M. W. 1989. Origin and evolution of mitochondrial DNA. Annu. Rev. Cell. Biol. 5, 25-50. https://doi.org/10.1146/annurev.cb.05.110189.000325
  38. Graziewicz, M. A., Longley, M. J. and Copeland, W. C. 2006. DNA polymerase gamma in mitochondrial DNA replication and repair. Chem. Rev. 106, 383-405. https://doi.org/10.1021/cr040463d
  39. Green, D. R. and Reed, J. C. 1998. Mitochondria and apoptosis. Science 281, 1309-1312. https://doi.org/10.1126/science.281.5381.1309
  40. Green, K., Brand, M. D. and Murphy, M. P. 2004. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 53 Suppl 1, S110-118. https://doi.org/10.2337/diabetes.53.2007.S110
  41. Guha, M. and Avadhani, N. G. 2013. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 13, 577-591. https://doi.org/10.1016/j.mito.2013.08.007
  42. Hallows, W. C., Yu, W., Smith, B. C., Devries, M. K., Ellinger, J. J., Someya, S., Shortreed, M. R., Prolla, T., Markley, J. L., Smith, L. M., Zhao, S., Guan, K. L. and Denu, J. M. 2011. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell. 41, 139-149. https://doi.org/10.1016/j.molcel.2011.01.002
  43. Hamanaka, R. B. and Chandel, N. S. 2010. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends. Biochem. Sci. 35, 505-513. https://doi.org/10.1016/j.tibs.2010.04.002
  44. Hanahan, D. and Weinberg, R. A. 2011. Hallmarks of Cancer: The Next Generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  45. Harper, M. E., Bevilacqua, L., Hagopian, K., Weindruch, R. and Ramsey, J. J. 2004. Ageing, oxidative stress, and mitochondrial uncoupling. Acta. Physiol. Scand. 182, 321-331. https://doi.org/10.1111/j.1365-201X.2004.01370.x
  46. Hensen, E. F., Siemers, M. D., Jansen, J. C., Corssmit, E. P., Romijn, J. A., Tops, C. M., van der Mey, A. G., Devilee, P., Cornelisse, C. J., Bayley, J. P. and Vriends, A. H. 2011. Mutations in SDHD are the major determinants of the clinical characteristics of Dutch head and neck paraganglioma patients. Clin. Endocrinol. (Oxf). 75, 650-655. https://doi.org/10.1111/j.1365-2265.2011.04097.x
  47. Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D. B., Grueter, C. A., Harris, C., Biddinger, S., Ilkayeva, O. R., Stevens, R. D., Li, Y., Saha, A. K., Ruderman, N. B., Bain, J. R., Newgard, C. B., Farese, R. V., Jr., Alt, F. W., Kahn, C. R. and Verdin, E. 2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-125. https://doi.org/10.1038/nature08778
  48. Hsu, C. C., Wu, L. C., Chi, C. W., Lee, H. C., Hsia, C. Y., Yin, P. H. and Yeh, T. S. 2015. Energy metabolism determines the sensitivity of human hepatocellular carcinoma cells to mitochondrial inhibitors and biguanide drugs. Oncol. Rep. 34, 1620-1628. https://doi.org/10.3892/or.2015.4092
  49. Hung, W. Y., Huang, K. H., Wu, C. W., Chi, C. W., Kao, H. L., Li, A. F., Yin, P. H. and Lee, H. C. 2012. Mitochondrial dysfunction promotes cell migration via reactive oxygen species-enhanced beta5-integrin expression in human gastric cancer SC-M1 cells. Biochim. Biophys. Acta. 1820, 1102-1110. https://doi.org/10.1016/j.bbagen.2012.04.016
  50. Hung, W. Y., Wu, C. W., Yin, P. H., Chang, C. J., Li, A. F., Chi, C. W., Wei, Y. H. and Lee, H. C. 2010. Somatic mutations in mitochondrial genome and their potential roles in the progression of human gastric cancer. Biochim. Biophys. Acta. 1800, 264-270. https://doi.org/10.1016/j.bbagen.2009.06.006
  51. Jazayeri, M., Andreyev, A., Will, Y., Ward, M., Anderson, C. M. and Clevenger, W. 2003. Inducible expression of a dominant negative DNA polymerase-gamma depletes mitochondrial DNA and produces a rho0 phenotype. J. Biol. Chem. 278, 9823-9830. https://doi.org/10.1074/jbc.M211730200
  52. Jiang, W. W., Masayesva, B., Zahurak, M., Carvalho, A. L., Rosenbaum, E., Mambo, E., Zhou, S., Minhas, K., Benoit, N., Westra, W. H., Alberg, A., Sidransky, D., Koch, W. and Califano, J. 2005. Increased mitochondrial DNA content in saliva associated with head and neck cancer. Clin. Cancer Res. 11, 2486-2491. https://doi.org/10.1158/1078-0432.CCR-04-2147
  53. Jo, A., Ham, S., Lee, G. H., Lee, Y. I., Kim, S., Lee, Y. S., Shin, J. H. and Lee, Y. 2015. Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed. Res. Int. 2015, 305716.
  54. Kang, M. R., Kim, M. S., Oh, J. E., Kim, Y. R., Song, S. Y., Seo, S. I., Lee, J. Y., Yoo, N. J. and Lee, S. H. 2009. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int. J. Cancer 125, 353-355. https://doi.org/10.1002/ijc.24379
  55. Karbowski, M. and Neutzner, A. 2012. Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta. Neuropathol. 123, 157-171. https://doi.org/10.1007/s00401-011-0921-0
  56. Kato, K., Radsak, K. D. and Koprowski, H. 1972. Differential effect of ethidium bromide and cytosine arabinoside on mitochondrial and nuclear DNA synthesis in HeLa cells. Z. Naturforsch. B. 27, 989-991.
  57. Kawauchi, K., Araki, K., Tobiume, K. and Tanaka, N. 2008. p53 regulates glucose metabolism through an IKK-NF-${\kappa}B$ pathway and inhibits cell transformation. Nat. Cell. Biol. 10, 611-618. https://doi.org/10.1038/ncb1724
  58. Kim, H. S., Patel, K., Muldoon-Jacobs, K., Bisht, K. S., Aykin- Burns, N., Pennington, J. D., van der Meer, R., Nguyen, P., Savage, J., Owens, K. M., Vassilopoulos, A., Ozden, O., Park, S. H., Singh, K. K., Abdulkadir, S. A., Spitz, D. R., Deng, C. X. and Gius, D. 2010. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 41-52. https://doi.org/10.1016/j.ccr.2009.11.023
  59. Kim, M. M., Clinger, J. D., Masayesva, B. G., Ha, P. K., Zahurak, M. L., Westra, W. H. and Califano, J. A. 2004. Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin. Cancer. Res. 10, 8512-8515. https://doi.org/10.1158/1078-0432.CCR-04-0734
  60. Kim, S., Kim, D. H., Jung, W. H. and Koo, J. S. 2013. Succinate dehydrogenase expression in breast cancer. Springerplus 2, 299. https://doi.org/10.1186/2193-1801-2-299
  61. Konradi, C., Eaton, M., MacDonald, M. L., Walsh, J., Benes, F. M. and Heckers, S. 2004. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch. Gen. Psychiatry 61, 300-308. https://doi.org/10.1001/archpsyc.61.3.300
  62. Launonen, V., Vierimaa, O., Kiuru, M., Isola, J., Roth, S., Pukkala, E., Sistonen, P., Herva, R. and Aaltonen, L. A. 2001. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc. Natl. Acad. Sci. USA. 98, 3387-3392. https://doi.org/10.1073/pnas.051633798
  63. Lee, H. C., Chang, C. M. and Chi, C. W. 2010. Somatic mutations of mitochondrial DNA in aging and cancer progression. Aging. Res. Rev. 9, S47-S58. https://doi.org/10.1016/j.arr.2010.08.009
  64. Lee, H. C., Huang, K. H., Yeh, T. S. and Chi, C. W. 2014. Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression. World. J. Gastroenterol. 20, 3950-3959. https://doi.org/10.3748/wjg.v20.i14.3950
  65. Lee, H. C., Li, S. H., Lin, J. C., Wu, C. C., Yeh, D. C. and Wei, Y. H. 2004. Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat. Res. 547, 71-78. https://doi.org/10.1016/j.mrfmmm.2003.12.011
  66. Lee, H. C., Yin, P. H., Lin, J. C., Wu, C. C., Chen, C. Y., Wu, C. W., Chi, C. W., Tam, T. N. and Wei, Y. H. 2005. Mitochondrial genome instability and mtDNA depletion in human cancers. Ann. N. Y. Acad. Sci. 1042, 109-122. https://doi.org/10.1196/annals.1338.011
  67. Lee, S. T., Wu, T. T., Yu, P. Y. and Chen, R. M. 2009. Apoptotic insults to human HepG2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondria- caspase protease pathway. Br. J. Anaesth. 102, 80-89. https://doi.org/10.1093/bja/aen322
  68. Lee, W., Choi, H. I., Kim, M. J. and Park, S. Y. 2008. Depletion of mitochondrial DNA up-regulates the expression of MDR1 gene via an increase in mRNA stability. Exp. Mol. Med. 40, 109-117. https://doi.org/10.3858/emm.2008.40.1.109
  69. Li, C. H., Tzeng, S. L., Cheng, Y. W. and Kang, J. J. 2005. Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21- dependent pathway. J. Biol. Chem. 280, 26193-26199. https://doi.org/10.1074/jbc.M501371200
  70. Li, J. M. and Shah, A. M. 2004. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1014-1030. https://doi.org/10.1152/ajpregu.00124.2004
  71. Liemburg-Apers, D. C., Willems, P. H., Koopman, W. J. and Grefte, S. 2015. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch. Toxicol. 89, 1209-1226. https://doi.org/10.1007/s00204-015-1520-y
  72. Limongelli, G., Masarone, D., D'Alessandro, R. and Elliott, P. M. 2012. Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Future. Cardiol. 8, 71-88. https://doi.org/10.2217/fca.11.79
  73. Lin, C. S., Chang, S. C., Wang, L. S., Chou, T. Y., Hsu, W. H., Wu, Y. C. and Wei, Y. H. 2010. The role of mitochondrial DNA alterations in esophageal squamous cell carcinomas. J. Thorac. Cardiovasc. Surg. 139, 189-197 e184. https://doi.org/10.1016/j.jtcvs.2009.04.007
  74. Lin, C. S., Lee, H. T., Lee, S. Y., Shen, Y. A., Wang, L. S., Chen, Y. J. and Wei, Y. H. 2012. High mitochondrial DNA copy number and bioenergetic function are associated with tumor invasion of esophageal squamous cell carcinoma cell lines. Int. J. Mol. Sci. 13, 11228-11246. https://doi.org/10.3390/ijms130911228
  75. Liu, J., Killilea, D. W. and Ames, B. N. 2002. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L- carnitine and/or R-alpha -lipoic acid. Proc. Natl. Acad. Sci. USA. 99, 1876-1881. https://doi.org/10.1073/pnas.261709098
  76. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. and Wang, X. 1996. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
  77. Lopez, J. and Tait, S. W. 2015. Mitochondrial apoptosis: killing cancer using the enemy within. Br. J. Cancer 112, 957-962. https://doi.org/10.1038/bjc.2015.85
  78. Lu, J., Sharma, L. K. and Bai, Y. 2009. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell. Res. 19, 802-815. https://doi.org/10.1038/cr.2009.69
  79. Luft, R., Ikkos, D., Palmieri, G., Ernster, L. and Afzelius, B. 1962. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J. Clin. Invest. 41, 1776-1804. https://doi.org/10.1172/JCI104637
  80. Ma, Z. A., Zhao, Z. and Turk, J. 2012. Mitochondrial dysfunction and beta-cell failure in type 2 diabetes mellitus. Exp. Diabetes. Res. 2012, 703538.
  81. Maiese, K., Morhan, S. D. and Chong, Z. Z. 2007. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. Curr. Neurovasc. Res. 4, 63-71. https://doi.org/10.2174/156720207779940653
  82. Mambo, E., Chatterjee, A., Xing, M., Tallini, G., Haugen, B. R., Yeung, S. C., Sukumar, S. and Sidransky, D. 2005. Tumorspecific changes in mtDNA content in human cancer. Int. J. Cancer 116, 920-924. https://doi.org/10.1002/ijc.21110
  83. Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T. and Simon, M. C. 2005. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell. Metab. 1, 393-399. https://doi.org/10.1016/j.cmet.2005.05.003
  84. Mao, P. and Reddy, P. H. 2010. Is multiple sclerosis a mitochondrial disease? Biochim. Biophys. Acta. 1802, 66-79. https://doi.org/10.1016/j.bbadis.2009.07.002
  85. Marin-Garcia, J. 2013. Methods to Study Mitochondrial Structure and Function, pp. 13-27, Springer US: Boston, MA, USA
  86. Mayr, J. A., Meierhofer, D., Zimmermann, F., Feichtinger, R., Kogler, C., Ratschek, M., Schmeller, N., Sperl, W. and Kofler, B. 2008. Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin. Cancer Res. 14, 2270-2275. https://doi.org/10.1158/1078-0432.CCR-07-4131
  87. Milligan, J. R., Aguilera, J. A. and Ward, J. F. 1993. Variation of single-strand break yield with scavenger concentration for the SV40 minichromosome irradiated in aqueous solution. Radiat. Res. 133, 158-162. https://doi.org/10.2307/3578351
  88. Miranda, S., Foncea, R., Guerrero, J. and Leighton, F. 1999. Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Biochem. Biophys. Res. Commun. 258, 44-49. https://doi.org/10.1006/bbrc.1999.0580
  89. Myhill, S., Booth, N. E. and McLaren-Howard, J. 2009. Chronic fatigue syndrome and mitochondrial dysfunction. Int. J. Clin. Exp. Med. 2, 1-16.
  90. Naito, A., Carcel-Trullols, J., Xie, C. H., Evans, T. T., Mizumachi, T. and Higuchi, M. 2008. Induction of acquired resistance to antiestrogen by reversible mitochondrial DNA depletion in breast cancer cell line. Int. J. Cancer 122, 1506-1511. https://doi.org/10.1002/ijc.23235
  91. Naito, A., Cook, C. C., Mizumachi, T., Wang, M., Xie, C. H., Evans, T. T., Kelly, T. and Higuchi, M. 2008. Progressive tumor features accompany epithelial-mesenchymal transition induced in mitochondrial DNA-depleted cells. Cancer Sci. 99, 1584-1588. https://doi.org/10.1111/j.1349-7006.2008.00879.x
  92. Nass, M. M. 1970. Abnormal DNA patterns in animal mitochondria: ethidium bromide-induced breakdown of closed circular DNA and conditions leading to oligomer accumulation. Proc. Natl. Acad. Sci. USA. 67, 1926-1933. https://doi.org/10.1073/pnas.67.4.1926
  93. Nicolson, G. L. 2007. Metabolic syndrome and mitochondrial function: molecular replacement and antioxidant supplements to prevent membrane peroxidation and restore mitochondrial function. J. Cell. Biochem. 100, 1352-1369. https://doi.org/10.1002/jcb.21247
  94. Nicolson, G. L. 2014. Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integr. Med. (Encinitas). 13, 35-43.
  95. Owens, K. M., Aykin-Burns, N., Dayal, D., Coleman, M. C., Domann, F. E. and Spitz, D. R. 2012. Genomic instability induced by mutant succinate dehydrogenase subunit D (SDHD) is mediated by $O_2^{-\bullet}$ and $H_2O_2$. Free. Radic. Biol. Med. 52, 160-166. https://doi.org/10.1016/j.freeradbiomed.2011.10.435
  96. Palmieri, L. and Persico, A. M. 2010. Mitochondrial dysfunction in autism spectrum disorders: cause or effect? Biochim. Biophys. Acta. 1797, 1130-1137. https://doi.org/10.1016/j.bbabio.2010.04.018
  97. Park, S. Y., Chang, I., Kim, J. Y., Kang, S. W., Park, S. H., Singh, K. and Lee, M. S. 2004. Resistance of mitochondrial DNA-depleted cells against cell death: role of mitochondrial superoxide dismutase. J. Biol. Chem. 279, 7512-7520. https://doi.org/10.1074/jbc.M307677200
  98. Pashkovskaia, N., Gey, U. and Rodel, G. 2018. Mitochondrial ROS direct the differentiation of murine pluripotent P19 cells. Stem. Cell. Res. 30, 180-191. https://doi.org/10.1016/j.scr.2018.06.007
  99. Petros, J. A., Baumann, A. K., Ruiz-Pesini, E., Amin, M. B., Sun, C. Q., Hall, J., Lim, S., Issa, M. M., Flanders, W. D., Hosseini, S. H., Marshall, F. F. and Wallace, D. C. 2005. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl. Acad. Sci. USA. 102, 719-724. https://doi.org/10.1073/pnas.0408894102
  100. Prince, J. A., Harro, J., Blennow, K., Gottfries, C. G. and Oreland, L. 2000. Putamen mitochondrial energy metabolism is highly correlated to emotional and intellectual impairment in schizophrenics. Neuropsychopharmacology 22, 284-292. https://doi.org/10.1016/S0893-133X(99)00111-6
  101. Qiu, X., Brown, K., Hirschey, M. D., Verdin, E. and Chen, D. 2010. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell. Metab. 12, 662-667. https://doi.org/10.1016/j.cmet.2010.11.015
  102. Rabinovich, R. A. and Vilaro, J. 2010. Structural and functional changes of peripheral muscles in chronic obstructive pulmonary disease patients. Curr. Opin. Pulm. Med. 16, 123-133. https://doi.org/10.1097/MCP.0b013e328336438d
  103. Reddy, P. H. 2008. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular. Med. 10, 291-315. https://doi.org/10.1007/s12017-008-8044-z
  104. Rohr, H. P., Wacker, M. and Pein, A. V. 1976. Ethidium bromide and hepatic mitochondrial structure in mice. A morphometric analysis. Pathol. Eur. 11, 129-135.
  105. Semenza, G. L. 2012. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends. Pharmacol. Sci. 33, 207-214. https://doi.org/10.1016/j.tips.2012.01.005
  106. Shigenaga, M. K., Hagen, T. M. and Ames, B. N. 1994. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA. 91, 10771-10778. https://doi.org/10.1073/pnas.91.23.10771
  107. Shin, Y. K., Yoo, B. C., Chang, H. J., Jeon, E., Hong, S. H., Jung, M. S., Lim, S. J. and Park, J. G. 2005. Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res. 65, 3162-3170. https://doi.org/10.1158/0008-5472.CAN-04-3300
  108. Sies, H. 1993. Strategies of antioxidant defense. Eur. J. Biochem. 215, 213-219. https://doi.org/10.1111/j.1432-1033.1993.tb18025.x
  109. Singh, K. K., Ayyasamy, V., Owens, K. M., Vujcic, M. and Koul, M. S. 2009. Mutations in mitochondrial DNA polymerase-${\gamma}$ promote breast tumorigenesis. J. Hum. Genet. 54, 516-524. https://doi.org/10.1038/jhg.2009.71
  110. Singh, K. K., Russell, J., Sigala, B., Zhang, Y., Williams, J. and Keshav, K. F. 1999. Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene 18, 6641-6646. https://doi.org/10.1038/sj.onc.1203056
  111. Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., Mandelker, D., Leary, R. J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz, S. D., Willis, J., Dawson, D., Willson, J. K., Gazdar, A. F., Hartigan, J., Wu, L., Liu, C., Parmigiani, G., Park, B. H., Bachman, K. E., Papadopoulos, N., Vogelstein, B., Kinzler, K. W. and Velculescu, V. E. 2006. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268-274. https://doi.org/10.1126/science.1133427
  112. Slonimski, P. P., Perrodin, G. and Croft, J. H. 1968. Ethidium bromide induced mutation of yeast mitochondria: complete transformation of cells into respiratory deficient non-chromosomal "petites". Biochem. Biophys. Res. Commun. 30, 232-239. https://doi.org/10.1016/0006-291X(68)90440-3
  113. Son, G. and Han, J. 2018. Roles of mitochondria in neuronal development. BMB. Rep. 51, 549-556. https://doi.org/10.5483/BMBRep.2018.51.11.226
  114. Sotgia, F., Martinez-Outschoorn, U. E. and Lisanti, M. P. 2011. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC. Med. 9, 62. https://doi.org/10.1186/1741-7015-9-62
  115. Spadafora, D., Kozhukhar, N., Chouljenko, V. N., Kousoulas, K. G. and Alexeyev, M. F. 2016. Methods for efficient elimination of mitochondrial DNA from cultured cells. PLoS One 11, e0154684. https://doi.org/10.1371/journal.pone.0154684
  116. Spees, J. L., Olson, S. D., Whitney, M. J. and Prockop, D. J. 2006. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. USA. 103, 1283-1288. https://doi.org/10.1073/pnas.0510511103
  117. Starkov, A. A. 2008. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci. 1147, 37-52. https://doi.org/10.1196/annals.1427.015
  118. Swerdlow, R. H. 2011. Brain aging, Alzheimer's disease, and mitochondria. Biochim. Biophys. Acta. 1812, 1630-1639. https://doi.org/10.1016/j.bbadis.2011.08.012
  119. Tanaka, M., Kovalenko, S. A., Gong, J. S., Borgeld, H. J., Katsumata, K., Hayakawa, M., Yoneda, M. and Ozawa, T. 1996. Accumulation of deletions and point mutations in mitochondrial genome in degenerative diseases. Ann. N. Y. Acad. Sci. 786, 102-111. https://doi.org/10.1111/j.1749-6632.1996.tb39055.x
  120. Tseng, L. M., Yin, P. H., Chi, C. W., Hsu, C. Y., Wu, C. W., Lee, L. M., Wei, Y. H. and Lee, H. C. 2006. Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosomes Cancer 45, 629-638. https://doi.org/10.1002/gcc.20326
  121. Tzagoloff, A. 1982. Mitochondria, pp. 1-14, Springer US: New York, USA
  122. Tzameli, I. 2012. The evolving role of mitochondria in metabolism. Trends. Endocrinol. Metab. 23, 417-419. https://doi.org/10.1016/j.tem.2012.07.008
  123. van der Wijst, M. G. P., van Tilburg, A. Y., Ruiters, M. H. J. and Rots, M. G. 2017. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Sci. Rep. 7, 177. https://doi.org/10.1038/s41598-017-00263-z
  124. van Waveren, C., Moraes, C. T., Sun, Y. and Cheung, H. S. 2006. Oxidative phosphorylation dysfunction modulates expression of extracellular matrix - Remodeling genes and invasion. Carcinogenesis 27, 409-418. https://doi.org/10.1093/carcin/bgi242
  125. Veltri, K. L., Espiritu, M. and Singh, G. 1990. Distinct genomic copy number in mitochondria of different mammalian organs. J. Cell. Physiol. 143, 160-164. https://doi.org/10.1002/jcp.1041430122
  126. Victor, V. M., Apostolova, N., Herance, R., Hernandez- Mijares, A. and Rocha, M. 2009. Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondriatargeted antioxidants as potential therapy. Curr. Med. Chem. 16, 4654-4667. https://doi.org/10.2174/092986709789878265
  127. Vyas, S., Zaganjor, E. and Haigis, M. C. 2016. Mitochondria and cancer. Cell 166, 555-566. https://doi.org/10.1016/j.cell.2016.07.002
  128. Wallace, D. C. 2012. Mitochondria and cancer. Nat. Rev. Cancer 12, 685-698. https://doi.org/10.1038/nrc3365
  129. Wallace, D. C. 1994. Mitochondrial DNA sequence variation in human evolution and disease. Proc. Natl. Acad. Sci. USA. 91, 8739-8746. https://doi.org/10.1073/pnas.91.19.8739
  130. Wallace, D. C. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359-407. https://doi.org/10.1146/annurev.genet.39.110304.095751
  131. Wallace, D. C., Fan, W. and Procaccio, V. 2010. Mitochondrial energetics and therapeutics. Annu. Rev. Pathol. 5, 297-348. https://doi.org/10.1146/annurev.pathol.4.110807.092314
  132. Wang, C. and Youle, R. J. 2009. The role of mitochondria in apoptosis. Annu. Rev. Genet. 43, 95-118. https://doi.org/10.1146/annurev-genet-102108-134850
  133. Wang, Y., Liu, V. W., Xue, W. C., Cheung, A. N. and Ngan, H. Y. 2006. Association of decreased mitochondrial DNA content with ovarian cancer progression. Br. J. Cancer 95, 1087-1091. https://doi.org/10.1038/sj.bjc.6603377
  134. Wei, Y. H., Lu, C. Y., Lee, H. C., Pang, C. Y. and Ma, Y. S. 1998. Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann. N. Y. Acad. Sci. 854, 155-170. https://doi.org/10.1111/j.1749-6632.1998.tb09899.x
  135. Weinberg, S. E., Sena, L. A. and Chandel, N. S. 2015. Mitochondria in the regulation of innate and adaptive immunity. Immunity 42, 406-417. https://doi.org/10.1016/j.immuni.2015.02.002
  136. Wiseman, A. and Attardi, G. 1978. Reversible tenfod reduction in mitochondria DNA content of human cells treated with ethidium bromide. Mol. Gen. Genet. 167, 51-63. https://doi.org/10.1007/BF00270321
  137. Wu, C. W., Yin, P. H., Hung, W. Y., Li, A. F., Li, S. H., Chi, C. W., Wei, Y. H. and Lee, H. C. 2005. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer 44, 19-28. https://doi.org/10.1002/gcc.20213
  138. Xiao, K., Jiang, J., Wang, W., Cao, S., Zhu, L., Zeng, H., Ouyang, R., Zhou, R. and Chen, P. 2013. Sirt3 is a tumor suppressor in lung adenocarcinoma cells. Oncol. Rep. 30, 1323-1328. https://doi.org/10.3892/or.2013.2604
  139. Yin, P. H., Lee, H. C., Chau, G. Y., Wu, Y. T., Li, S. H., Lui, W. Y., Wei, Y. H., Liu, T. Y. and Chi, C. W. 2004. Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br. J. Cancer. 90, 2390-2396. https://doi.org/10.1038/sj.bjc.6601838
  140. Yu, M., Shi, Y., Wei, X., Yang, Y., Zhou, Y., Hao, X., Zhang, N. and Niu, R. 2007. Depletion of mitochondrial DNA by ethidium bromide treatment inhibits the proliferation and tumorigenesis of T47D human breast cancer cells. Toxicol. Lett. 170, 83-93. https://doi.org/10.1016/j.toxlet.2007.02.013
  141. Yu, M., Zhou, Y., Shi, Y., Ning, L., Yang, Y., Wei, X., Zhang, N., Hao, X. and Niu, R. 2007. Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. IUBMB Life 59, 450-457. https://doi.org/10.1080/15216540701509955
  142. Zylber, E., Vesco, C. and Penman, S. 1969. Selective inhibition of the synthesis of mitochondria-associated RNA by ethidium bromide. J. Mol. Biol. 44, 195-204. https://doi.org/10.1016/0022-2836(69)90414-8