DOI QR코드

DOI QR Code

Palmitate처리된 인간 간세포주 HepG2 세포에서 piperine의 지질 축적과 인슐린 저항성 기전에 대한 연구

Effects of Piperine on Insulin Resistance and Lipid Accumulation in Palmitate-treated HepG2 Cells

  • 정희진 (부산대학교 장수생명과학기술연구원) ;
  • 방은진 (부산대학교 약학대학 약학과) ;
  • 정성호 (부산대학교 약학대학 약학과) ;
  • 김병무 (부산대학교 약학대학 약학과) ;
  • 정해영 (부산대학교 장수생명과학기술연구원)
  • Jung, Hee Jin (Longevity Life Science and Technology Institutes, Pusan National University) ;
  • Bang, EunJin (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Jeong, Seong Ho (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Kim, Byeong Moo (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Chung, Hae Young (Longevity Life Science and Technology Institutes, Pusan National University)
  • 투고 : 2019.09.03
  • 심사 : 2019.09.23
  • 발행 : 2019.09.30

초록

간의 지질 축적과 인슐린 저항성은 비알콜성 지방간 환자에게서 증가한다. Piperine은 후추(Piper nigrum)와 필발(인도산 후추, P. longum)의 주요 성분으로 항암, 항비만, 항 당뇨병, 항염증 및 항산화 등의 생리활성이 보고되었다. 그러나 piperine의 인간 간세포 HepG2 세포에서 지질 축적과 인슐린 저항성의 억제제로서의 연구는 보고된 바가 없다. 본 연구의 목적은 지질 축적 및 인슐린 저항성에 대한 piperine의 효과를 palmitate처리된 HepG2 세포에서 잠재적인 분자 기전을 밝히는 것이다. 그 결과 piperine처리군은 지질 함량을 감소시켰고, 지방 형성 표적 유전자인 SREBP-1c와 FAS의 발현을 억제함으로써 palmitate처리된 세포내 지질 축적을 감소시켰다. 게다가 piperine처리군은 지방산 산화에 관련된 CPT-1과 인산화된 ACC 및 인산화된 IRS-1 (Tyr632)와 Akt의 레벨을 증가시켰다. 또한, piperine처리군은 인산화된 IRS-1 (Ser307)의 레벨을 감소시켰다. 결론적으로 palmitate처리된 HepG2 세포에서 piperine은 SREBP-1와 FAS발현의 감소 및 CPT-1과 ACC 인산화의 증가 및 인산화된 IRS-1(Try632)와 Akt 신호전달 경로를 조절함으로써 지질 축적 및 인슐린 저항성을 개선함을 확인하였다. 따라서 piperine의 지질 축적 및 인슐린 저항성을 예방하는 약물로써 가능성이 제시되었다.

Hepatic lipid accumulation and insulin resistance increases in patients with non-alcoholic fatty liver disease. Piperine is a major compound found in black pepper (Piper nigrum) and long pepper (P. longum). Piperine has been used in fine chemical for its anti-cancer, anti-obesity, anti-diabetic, anti-inflammatory and anti-oxidant properties. However, the signaling-based mechanism of piperine and its role as an inhibitor of lipogenesis and insulin resistance in human hepatocyte cells remains ill-defined. In the present study, we explored the effects of piperine on lipid accumulation and insulin resistance, and explored the potential underlying molecular mechanisms in palmitate-treated HepG2 cells. Piperine treatment resulted in a significant reduction of triglyceride content. Furthermore, piperine treatment decreased palmitate-treated intracellular lipid deposition by inhibiting the lipogenic target genes, sterol-regulatory-element-binding protein 1c (SREBP-1c) and fatty acid synthase (FAS); whereas the expression of carnitine palmitoyl transferase (CPT-1) and phosphorylation of acetyl coenzyme A carboxylase (ACC) gene involved in fatty acid oxidation was increased. Moreover, piperine also inhibited the phosphorylation of insulin receptor substrate (IRS)-1 (Ser307). Piperine treatment modulated palmitate-treated lipid accumulation and insulin resistance in HepG2 cells with concomitant reduction of lipogenic target genes, such as SREBP-1 and FAS, and induction of CPT-1-ACC and phosphorylation of IRS-1 (Tyr632)-Akt pathways. Therefore, piperine represents a promising treatment for the prevention of lipid accumulation and insulin resistance.

키워드

참고문헌

  1. Adrian, L., Lenski, M., Todter, K., Heeren, J., Bohm, M. and Laufs, U. 2017. AMPK prevents palmitic acid-induced apoptosis and lipid accumulation in cardiomyocytes. Lipids 52, 737-750. https://doi.org/10.1007/s11745-017-4285-7
  2. Ahmed, M. H. and Byrne, C. D. 2007. Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD). Drug Discov. Today 12, 740-747. https://doi.org/10.1016/j.drudis.2007.07.009
  3. Arcaro, C. A., Gutierres, V. O., Assis, R. P., Moreira, T. F., Costa, P. I., Baviera, A. M. and Brunetti, I. L. 2014. Piperine, a natural bioenhancer, nullifies the antidiabetic and antioxidant activities of curcumin in streptozotocin-diabetic rats. PloS One 9, e113993. https://doi.org/10.1371/journal.pone.0113993
  4. Atal, S., Agrawal, R. P., Vyas, S., Phadnis, P. and Rai, N. 2012. Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta. Pol. Pharm. 69, 965-969.
  5. Atshaves, B. P., Storey, S. M., Petrescu, A., Greenberg, C. C., Lyuksyutova, O. I., Smith, R. 3rd. and Schroeder, F. 2002. Expression of fatty acid binding proteins inhibits lipid accumulation and alters toxicity in L cell fibroblasts. Am. J. Physiol. Cell Physiol. 283, C688-703. https://doi.org/10.1152/ajpcell.00586.2001
  6. Bhala, N., Younes, R. and Bugianesi, E. 2013. Epidemiology and natural history of patients with NAFLD. Curr. Pharm. Des. 19, 5169-5176. https://doi.org/10.2174/13816128113199990336
  7. Boizard, M., Le Liepvre, X., Lemarchand, P., Foufelle, F., Ferre, P. and Dugail, I. 1998. Obesity-related overexpression of fatty-acid synthase gene in adipose tissue involves sterol regulatory element-binding protein transcription factors. J. Biol. Chem. 273, 29164-29171. https://doi.org/10.1074/jbc.273.44.29164
  8. Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E. and Lee, W. M. 2006. Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans. 34, 223-227. https://doi.org/10.1042/BST0340223
  9. Chavez, J. A. and Summers, S. A. 2003. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch. Biochem. Biophys. 419, 101-109. https://doi.org/10.1016/j.abb.2003.08.020
  10. Choi, S., Choi, Y., Choi, Y., Kim, S., Jang, J. and Park, T. 2013. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem. 141, 3627-3635. https://doi.org/10.1016/j.foodchem.2013.06.028
  11. Copps, K. D. and White, M. F. 2012. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55, 2565-2582. https://doi.org/10.1007/s00125-012-2644-8
  12. Dihingia, A., Bordoloi, J., Dutta, P., Kalita J. and Manna, P. 2018. Hexane-isopropanolic extract of tungrymbai, a north-east indian fermented soybean food prevents hepatic steatosis via regulating AMPK-mediated SREBP/FAS/ ACC/HMGCR and $PPAR{\alpha}$/CPT1A/UCP2 pathways. Sci. Rep. 8, 10021. https://doi.org/10.1038/s41598-018-27607-7
  13. Diwan, V., Poudyal, H. and Brown, L. 2013. Piperine attenuates cardiovascular, liver and metabolic changes in high carbohydrate, high fat-fed rats. Cell Biochem. Biophys. 67, 297-304. https://doi.org/10.1007/s12013-011-9306-1
  14. Doucette, C. D., Hilchie, A. L., Liwski, R. and Hoskin, D. W. 2013. Piperine, a dietary phytochemical, inhibits angiogenesis. J. Nutr. Biochem. 24, 231-239. https://doi.org/10.1016/j.jnutbio.2012.05.009
  15. Gao, D. and Li, Y. 2017. Identification and preliminary structure- activity relationships of 1-indanone derivatives as novel indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors. Bioorg. Med. Chem. 25, 3780-3791. https://doi.org/10.1016/j.bmc.2017.05.017
  16. Goldstein, J. L., DeBose-Boyd, R. A. and Brown, M. S. 2006. Protein sensors for membrane sterols. Cell 124, 35-46. https://doi.org/10.1016/j.cell.2005.12.022
  17. Gomez-Lechon, M. J., Donato, M. T., Martinez-Romero, A., Jimenez, N., Castell, J. V. and O'Connor, J. E. 2007. A human hepatocellular in vitro model to investigate steatosis. Chem. Biol. Interact. 165, 106-116. https://doi.org/10.1016/j.cbi.2006.11.004
  18. Guillet-Deniau, I., Pichard, A. L., Koné, A., Esnous, C., Nieruchalski, M., Girard, J. and Prip-Buus, C. 2004. Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-1c-dependent pathway. J. Cell Sci. 117, 1937-1944. https://doi.org/10.1242/jcs.01069
  19. Habib, A., Creminon, C., Frobert, Y., Grassi, J., Pradelles, P. and Maclouf, J. 1993. Demonstration of an inducible cyclooxygenase in human endothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. J. Biol. Chem. 268, 23448-23454. https://doi.org/10.1016/S0021-9258(19)49483-0
  20. Ishii, M., Maeda, A., Tani, S. and Akagawa, M. 2015. Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Arch. Biochem. Biophys. 566, 26-35. https://doi.org/10.1016/j.abb.2014.12.009
  21. Jensen-Urstad, A. P. and Semenkovich, C. F. 2012. Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim. Biophys. Acta 1821, 747-753. https://doi.org/10.1016/j.bbalip.2011.09.017
  22. Jung, T. W., Choi, H. Y., Lee, S. Y., Hong, H. C., Yang, S. J., Yoo, H. J., Youn, B. S., Baik, S. H. and Choi, K. M. 2013. Salsalate and adiponectin improve palmitate-induced insulin resistance via inhibition of selenoprotein P through the AMPK- FOXO1alpha pathway. PloS One 8, e66529. https://doi.org/10.1371/journal.pone.0066529
  23. Jwa, H., Choi, Y., Park, U. H., Um, S. J., Yoon, S. K. and Park, T. 2012. Piperine, an $LXR{\alpha}$ antagonist, protects against hepatic steatosis and improves insulin signaling in mice fed a high-fat diet. Biochem. Pharmacol. 84, 1501-1510. https://doi.org/10.1016/j.bcp.2012.09.009
  24. Li, J., Ding, L., Song, B., Xiao, X., Qi, M., Yang, Q., Yang, Q., Tang, X., Wang, Z. and Yang, L. 2016. Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway. Eur. J. Pharmacol. 770, 99-109. https://doi.org/10.1016/j.ejphar.2015.11.045
  25. Lin, W. C., Shih, P. H., Wang, W., Wu, C. H., Hsia, S. M., Wang, H. J., Hwang, P. A., Wang, C. Y., Chen, S. H. and Kuo, Y. T. 2015. Inhibitory effects of high stability fucoxanthin on palmitic acid-induced lipid accumulation in human adipose-derived stem cells through modulation of long non-coding RNA. Food Funct. 6, 2215-2223. https://doi.org/10.1039/C5FO00301F
  26. Lin, Y., Xu, J., Liao, H., Li, L. and Pan, L. 2014. Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumour Biol. 35, 3305-3310. https://doi.org/10.1007/s13277-013-1433-4
  27. McGarry, J. D. and Brown, N. F. 1997. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244, 1-14. https://doi.org/10.1111/j.1432-1033.1997.00001.x
  28. Michelotti, G. A., Machado, M. V. and Diehl, A. M. 2013. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656-665. https://doi.org/10.1038/nrgastro.2013.183
  29. Mittal, R. and Gupta, R. L. 2000. In vitro antioxidant activity of piperine. Method. Find. Exp.Clin. Pharmacol. 22, 271-274. https://doi.org/10.1358/mf.2000.22.5.796644
  30. Nakamura, S., Takamura, T., Matsuzawa-Nagata, N., Takayama, H., Misu, H., Noda, H., Nabemoto, S., Kurita, S., Ota, T., Ando, H., Miyamoto, K. and Kaneko, S. 2009. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J. Biol. Chem. 284, 14809-14818. https://doi.org/10.1074/jbc.M901488200
  31. Nguyen, M. T., Satoh, H., Favelyukis, S., Babendure, J. L., Imamura, T., Sbodio, J. I., Zalevsky, J., Dahiyat, B. I., Chi, N. W. and Olefsky, J. M. 2005. JNK and tumor necrosis factor- alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 280, 35361-35371. https://doi.org/10.1074/jbc.M504611200
  32. Park, J. Y., Kim, Y., Im, J. A. and Lee, H. 2015. Oligonol suppresses lipid accumulation and improves insulin resistance in a palmitate-induced in HepG2 hepatocytes as a cellular steatosis model. BMC Complement Altern. Med. 15, 185. https://doi.org/10.1186/s12906-015-0709-1
  33. Rauscher, F. M., Sanders, R. A. and Watkins, J. B. 3rd. 2000. Effects of piperine on antioxidant pathways in tissues from normal and streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 14, 329-334. https://doi.org/10.1002/1099-0461(2000)14:6<329::AID-JBT5>3.0.CO;2-G
  34. Reddy, J. K. and Rao, M. S. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G852-858. https://doi.org/10.1152/ajpgi.00521.2005
  35. Saltiel, A. R. and Kahn, C. R. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806. https://doi.org/10.1038/414799a
  36. Selvendiran, K., Banu, S. M. and Sakthisekaran, D. 2004. Protective effect of piperine on benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Clin. Chim. Acta 350, 73-78. https://doi.org/10.1016/j.cccn.2004.07.004
  37. Shimano, H., Yahagi, N., Amemiya-Kudo, M., Hasty, A. H., Osuga, J., Tamura, Y., Shionoiri, F., Iizuka, Y., Ohashi, K., Harada, K., Gotoda, T., Ishibashi, S. and Yamada, N. 1999. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274, 35832-35839. https://doi.org/10.1074/jbc.274.50.35832
  38. Srinivasan, K. 2007. Black pepper and its pungent principle- piperine: a review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 47, 735-748. https://doi.org/10.1080/10408390601062054
  39. Umar, S., Golam Sarwar, A. H., Umar, K., Ahmad, N., Sajad, M., Ahmad, S., Katiyar, C. K. and Khan, H. A. 2013. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cell Immunol. 284, 51-59. https://doi.org/10.1016/j.cellimm.2013.07.004
  40. Wang, D., Tian, M., Qi, Y., Chen, G., Xu, L., Zou, X., Wang, K., Dong, H. and Lu, F. 2015. Jinlida granule inhibits palmitic acid induced-intracellular lipid accumulation and enhances autophagy in NIT-1 pancreatic beta cells through AMPK activation. J. Ethnopharmacol. 161, 99-107. https://doi.org/10.1016/j.jep.2014.12.005
  41. Wolfgang, M. J. and Lane, M. D. 2011. Hypothalamic malonyl- CoA and CPT1c in the treatment of obesity. FEBS J. 278, 552-558. https://doi.org/10.1111/j.1742-4658.2010.07978.x
  42. Yang, M., Wei, D., Mo, C., Zhang, J., Wang, X., Han, X., Wang, Z. and Xiao, H. 2013. Saturated fatty acid palmitate- induced insulin resistance is accompanied with myotube loss and the impaired expression of health benefit myokine genes in C2C12 myotubes. Lipids Health Dis. 12, 104. https://doi.org/10.1186/1476-511X-12-104
  43. Yokoyama, K., Tatsumi, Y., Hayashi, K., Goto, H., Ishikawa, T. and Wakusawa, S. 2017. Effects of ursodeoxycholic acid and insulin on palmitate-induced ROS production and down-regulation of PI3K/Akt signaling activity. Biol. Pharm. Bull. 40, 2001-2004. https://doi.org/10.1248/bpb.b17-00423
  44. Yu, X. X., Murray, S. F., Pandey, S. K., Booten, S. L., Bao, D., Song, X. Z., Kelly, S., Chen, S., McKay, R., Monia, B. P. and Bhanot, S. 2005. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 42, 362-371. https://doi.org/10.1002/hep.20783
  45. Zhang, Y., Liu, X., Han, L., Gao, X., Liu, E. and Wang, T. 2013. Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways. Food Chem. 141, 2896-2905. https://doi.org/10.1016/j.foodchem.2013.05.121