References
- Adrian, L., Lenski, M., Todter, K., Heeren, J., Bohm, M. and Laufs, U. 2017. AMPK prevents palmitic acid-induced apoptosis and lipid accumulation in cardiomyocytes. Lipids 52, 737-750. https://doi.org/10.1007/s11745-017-4285-7
- Ahmed, M. H. and Byrne, C. D. 2007. Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD). Drug Discov. Today 12, 740-747. https://doi.org/10.1016/j.drudis.2007.07.009
- Arcaro, C. A., Gutierres, V. O., Assis, R. P., Moreira, T. F., Costa, P. I., Baviera, A. M. and Brunetti, I. L. 2014. Piperine, a natural bioenhancer, nullifies the antidiabetic and antioxidant activities of curcumin in streptozotocin-diabetic rats. PloS One 9, e113993. https://doi.org/10.1371/journal.pone.0113993
- Atal, S., Agrawal, R. P., Vyas, S., Phadnis, P. and Rai, N. 2012. Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta. Pol. Pharm. 69, 965-969.
- Atshaves, B. P., Storey, S. M., Petrescu, A., Greenberg, C. C., Lyuksyutova, O. I., Smith, R. 3rd. and Schroeder, F. 2002. Expression of fatty acid binding proteins inhibits lipid accumulation and alters toxicity in L cell fibroblasts. Am. J. Physiol. Cell Physiol. 283, C688-703. https://doi.org/10.1152/ajpcell.00586.2001
- Bhala, N., Younes, R. and Bugianesi, E. 2013. Epidemiology and natural history of patients with NAFLD. Curr. Pharm. Des. 19, 5169-5176. https://doi.org/10.2174/13816128113199990336
- Boizard, M., Le Liepvre, X., Lemarchand, P., Foufelle, F., Ferre, P. and Dugail, I. 1998. Obesity-related overexpression of fatty-acid synthase gene in adipose tissue involves sterol regulatory element-binding protein transcription factors. J. Biol. Chem. 273, 29164-29171. https://doi.org/10.1074/jbc.273.44.29164
- Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E. and Lee, W. M. 2006. Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans. 34, 223-227. https://doi.org/10.1042/BST0340223
- Chavez, J. A. and Summers, S. A. 2003. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch. Biochem. Biophys. 419, 101-109. https://doi.org/10.1016/j.abb.2003.08.020
- Choi, S., Choi, Y., Choi, Y., Kim, S., Jang, J. and Park, T. 2013. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem. 141, 3627-3635. https://doi.org/10.1016/j.foodchem.2013.06.028
- Copps, K. D. and White, M. F. 2012. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55, 2565-2582. https://doi.org/10.1007/s00125-012-2644-8
-
Dihingia, A., Bordoloi, J., Dutta, P., Kalita J. and Manna, P. 2018. Hexane-isopropanolic extract of tungrymbai, a north-east indian fermented soybean food prevents hepatic steatosis via regulating AMPK-mediated SREBP/FAS/ ACC/HMGCR and
$PPAR{\alpha}$ /CPT1A/UCP2 pathways. Sci. Rep. 8, 10021. https://doi.org/10.1038/s41598-018-27607-7 - Diwan, V., Poudyal, H. and Brown, L. 2013. Piperine attenuates cardiovascular, liver and metabolic changes in high carbohydrate, high fat-fed rats. Cell Biochem. Biophys. 67, 297-304. https://doi.org/10.1007/s12013-011-9306-1
- Doucette, C. D., Hilchie, A. L., Liwski, R. and Hoskin, D. W. 2013. Piperine, a dietary phytochemical, inhibits angiogenesis. J. Nutr. Biochem. 24, 231-239. https://doi.org/10.1016/j.jnutbio.2012.05.009
- Gao, D. and Li, Y. 2017. Identification and preliminary structure- activity relationships of 1-indanone derivatives as novel indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors. Bioorg. Med. Chem. 25, 3780-3791. https://doi.org/10.1016/j.bmc.2017.05.017
- Goldstein, J. L., DeBose-Boyd, R. A. and Brown, M. S. 2006. Protein sensors for membrane sterols. Cell 124, 35-46. https://doi.org/10.1016/j.cell.2005.12.022
- Gomez-Lechon, M. J., Donato, M. T., Martinez-Romero, A., Jimenez, N., Castell, J. V. and O'Connor, J. E. 2007. A human hepatocellular in vitro model to investigate steatosis. Chem. Biol. Interact. 165, 106-116. https://doi.org/10.1016/j.cbi.2006.11.004
- Guillet-Deniau, I., Pichard, A. L., Koné, A., Esnous, C., Nieruchalski, M., Girard, J. and Prip-Buus, C. 2004. Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-1c-dependent pathway. J. Cell Sci. 117, 1937-1944. https://doi.org/10.1242/jcs.01069
- Habib, A., Creminon, C., Frobert, Y., Grassi, J., Pradelles, P. and Maclouf, J. 1993. Demonstration of an inducible cyclooxygenase in human endothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. J. Biol. Chem. 268, 23448-23454. https://doi.org/10.1016/S0021-9258(19)49483-0
- Ishii, M., Maeda, A., Tani, S. and Akagawa, M. 2015. Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Arch. Biochem. Biophys. 566, 26-35. https://doi.org/10.1016/j.abb.2014.12.009
- Jensen-Urstad, A. P. and Semenkovich, C. F. 2012. Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim. Biophys. Acta 1821, 747-753. https://doi.org/10.1016/j.bbalip.2011.09.017
- Jung, T. W., Choi, H. Y., Lee, S. Y., Hong, H. C., Yang, S. J., Yoo, H. J., Youn, B. S., Baik, S. H. and Choi, K. M. 2013. Salsalate and adiponectin improve palmitate-induced insulin resistance via inhibition of selenoprotein P through the AMPK- FOXO1alpha pathway. PloS One 8, e66529. https://doi.org/10.1371/journal.pone.0066529
-
Jwa, H., Choi, Y., Park, U. H., Um, S. J., Yoon, S. K. and Park, T. 2012. Piperine, an
$LXR{\alpha}$ antagonist, protects against hepatic steatosis and improves insulin signaling in mice fed a high-fat diet. Biochem. Pharmacol. 84, 1501-1510. https://doi.org/10.1016/j.bcp.2012.09.009 - Li, J., Ding, L., Song, B., Xiao, X., Qi, M., Yang, Q., Yang, Q., Tang, X., Wang, Z. and Yang, L. 2016. Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway. Eur. J. Pharmacol. 770, 99-109. https://doi.org/10.1016/j.ejphar.2015.11.045
- Lin, W. C., Shih, P. H., Wang, W., Wu, C. H., Hsia, S. M., Wang, H. J., Hwang, P. A., Wang, C. Y., Chen, S. H. and Kuo, Y. T. 2015. Inhibitory effects of high stability fucoxanthin on palmitic acid-induced lipid accumulation in human adipose-derived stem cells through modulation of long non-coding RNA. Food Funct. 6, 2215-2223. https://doi.org/10.1039/C5FO00301F
- Lin, Y., Xu, J., Liao, H., Li, L. and Pan, L. 2014. Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumour Biol. 35, 3305-3310. https://doi.org/10.1007/s13277-013-1433-4
- McGarry, J. D. and Brown, N. F. 1997. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244, 1-14. https://doi.org/10.1111/j.1432-1033.1997.00001.x
- Michelotti, G. A., Machado, M. V. and Diehl, A. M. 2013. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656-665. https://doi.org/10.1038/nrgastro.2013.183
- Mittal, R. and Gupta, R. L. 2000. In vitro antioxidant activity of piperine. Method. Find. Exp.Clin. Pharmacol. 22, 271-274. https://doi.org/10.1358/mf.2000.22.5.796644
- Nakamura, S., Takamura, T., Matsuzawa-Nagata, N., Takayama, H., Misu, H., Noda, H., Nabemoto, S., Kurita, S., Ota, T., Ando, H., Miyamoto, K. and Kaneko, S. 2009. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J. Biol. Chem. 284, 14809-14818. https://doi.org/10.1074/jbc.M901488200
- Nguyen, M. T., Satoh, H., Favelyukis, S., Babendure, J. L., Imamura, T., Sbodio, J. I., Zalevsky, J., Dahiyat, B. I., Chi, N. W. and Olefsky, J. M. 2005. JNK and tumor necrosis factor- alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 280, 35361-35371. https://doi.org/10.1074/jbc.M504611200
- Park, J. Y., Kim, Y., Im, J. A. and Lee, H. 2015. Oligonol suppresses lipid accumulation and improves insulin resistance in a palmitate-induced in HepG2 hepatocytes as a cellular steatosis model. BMC Complement Altern. Med. 15, 185. https://doi.org/10.1186/s12906-015-0709-1
- Rauscher, F. M., Sanders, R. A. and Watkins, J. B. 3rd. 2000. Effects of piperine on antioxidant pathways in tissues from normal and streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 14, 329-334. https://doi.org/10.1002/1099-0461(2000)14:6<329::AID-JBT5>3.0.CO;2-G
- Reddy, J. K. and Rao, M. S. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G852-858. https://doi.org/10.1152/ajpgi.00521.2005
- Saltiel, A. R. and Kahn, C. R. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806. https://doi.org/10.1038/414799a
- Selvendiran, K., Banu, S. M. and Sakthisekaran, D. 2004. Protective effect of piperine on benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Clin. Chim. Acta 350, 73-78. https://doi.org/10.1016/j.cccn.2004.07.004
- Shimano, H., Yahagi, N., Amemiya-Kudo, M., Hasty, A. H., Osuga, J., Tamura, Y., Shionoiri, F., Iizuka, Y., Ohashi, K., Harada, K., Gotoda, T., Ishibashi, S. and Yamada, N. 1999. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274, 35832-35839. https://doi.org/10.1074/jbc.274.50.35832
- Srinivasan, K. 2007. Black pepper and its pungent principle- piperine: a review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 47, 735-748. https://doi.org/10.1080/10408390601062054
- Umar, S., Golam Sarwar, A. H., Umar, K., Ahmad, N., Sajad, M., Ahmad, S., Katiyar, C. K. and Khan, H. A. 2013. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cell Immunol. 284, 51-59. https://doi.org/10.1016/j.cellimm.2013.07.004
- Wang, D., Tian, M., Qi, Y., Chen, G., Xu, L., Zou, X., Wang, K., Dong, H. and Lu, F. 2015. Jinlida granule inhibits palmitic acid induced-intracellular lipid accumulation and enhances autophagy in NIT-1 pancreatic beta cells through AMPK activation. J. Ethnopharmacol. 161, 99-107. https://doi.org/10.1016/j.jep.2014.12.005
- Wolfgang, M. J. and Lane, M. D. 2011. Hypothalamic malonyl- CoA and CPT1c in the treatment of obesity. FEBS J. 278, 552-558. https://doi.org/10.1111/j.1742-4658.2010.07978.x
- Yang, M., Wei, D., Mo, C., Zhang, J., Wang, X., Han, X., Wang, Z. and Xiao, H. 2013. Saturated fatty acid palmitate- induced insulin resistance is accompanied with myotube loss and the impaired expression of health benefit myokine genes in C2C12 myotubes. Lipids Health Dis. 12, 104. https://doi.org/10.1186/1476-511X-12-104
- Yokoyama, K., Tatsumi, Y., Hayashi, K., Goto, H., Ishikawa, T. and Wakusawa, S. 2017. Effects of ursodeoxycholic acid and insulin on palmitate-induced ROS production and down-regulation of PI3K/Akt signaling activity. Biol. Pharm. Bull. 40, 2001-2004. https://doi.org/10.1248/bpb.b17-00423
- Yu, X. X., Murray, S. F., Pandey, S. K., Booten, S. L., Bao, D., Song, X. Z., Kelly, S., Chen, S., McKay, R., Monia, B. P. and Bhanot, S. 2005. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 42, 362-371. https://doi.org/10.1002/hep.20783
- Zhang, Y., Liu, X., Han, L., Gao, X., Liu, E. and Wang, T. 2013. Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways. Food Chem. 141, 2896-2905. https://doi.org/10.1016/j.foodchem.2013.05.121