DOI QR코드

DOI QR Code

Identification of C4orf32 as a Novel Type I Endoplasmic Reticulum Resident Membrane Protein

Type I 소포체 목표화 막단백질에 속하는 새로운 C4orf32 막단백질의 동정

  • Lee, Seung-Hwan (Department of Ecological Science, College of Ecology and Environment, Kyungpook National University) ;
  • Park, Sang-Won (Department of Ecological Science, College of Ecology and Environment, Kyungpook National University) ;
  • Lee, Jin-A (Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University) ;
  • Jang, Deok-Jin (Department of Ecological Science, College of Ecology and Environment, Kyungpook National University)
  • 이승환 (경북대학교 생태환경대학 생태과학과) ;
  • 박상원 (경북대학교 생태환경대학 생태과학과) ;
  • 이진아 (한남대학교 생명나노과학대학 생명시스템과학과) ;
  • 장덕진 (경북대학교 생태환경대학 생태과학과)
  • Received : 2019.07.17
  • Accepted : 2019.09.09
  • Published : 2019.09.30

Abstract

Membrane topology is a key characteristic of membrane proteins. We previously reported the cloning of the chromosome 4 open-reading frame 32 (C4orf32) gene as a potential membrane protein; however, the cellular localization and membrane topology of C4orf32 was as yet unknown. In this study, we found that green fluorescent protein (GFP) fused to the C-terminus of C4orf32 (C4orf32-GFP) was localized to the endoplasmic reticulum (ER). We applied three tools to identify determinants of C4orf32 topology: protease protection, fluorescence protease protection (FPP), and an inducible system using the ternary complex between FK506 binding protein 12 (FKBP), rapamycin, and the rapamycin-binding domain of mTOR (FRB) (the FRB-rapamycin-FKBP system). Using protease protection and FPP assays, we found that the GFP tag in C4orf32-GFP was localized to the cytoplasmic surface of the ER membrane of HeLa cells. Protease protection and FPP assays are useful and complimentary tools for identifying the topology of GFP fusion membrane proteins. The FRB-rapamycin-FKBP system was also used to study the topology of C4orf32. In the absence of rapamycin, a monomeric red fluorescent protein-FKBP fusion (mRFP-FKBP) and C4orf32-GFP-FRB were localized to the cytoplasm and the ER membrane, respectively. However, in the presence of rapamycin, the mRFP-FKBP was shifted from the cytoplasm to the ER and colocalized with the C4orf32-GFP-FRB. These results indicate that the FRB moiety is facing the cytoplasmic surface of ER membrane. Overall, our results clearly suggest that C4orf32 belongs to the family of type I ER resident membrane proteins.

세포막 단백질의 topology는 막단백질의 중요한 특징이다. 우리는 이전에 C4orf32단백질을 클로닝 하였으나, 이 단백질의 세포내 위치나 topology는 알지 못했다. 이번 연구를 통해 C4orf32는 세포내에서 소포체에 위치되는 막단백질임을 알게 되었다. C4orf32의 topology를 알기 위해 protease protection assay, fluorescence protease protection (FPP) assay, FRB/rapamycin/FKBP system을 활용하였다. Protease protection assay와 FPP assay를 적용한 결과 C-말단에 GFP를 붙인 C4orf32-GFP의 경우 GFP가 소포체의 세포질 표면에 위치함을 확인할 수 있었다. 또한, FRB/rapamycin/FKBP시스템을 이용한 실험에서 rapamycin이 처리되지 않은 경우는 mRFP-FKBP가 세포질에 위치하다가 rapamycin이 처리되면 C4orf32-GFP-FR가 위치하는 소포체로 이동함을 확인할 수 있었다. 이러한 사실은 C4orf32의 C-말단이 소포체의 세포질쪽 면에 위치한다는 사실을 말해준다. 이러한 연구를 통해 C4orf32는 Type I 소포체 막단백질에 속한다는 사실을 확인할 수 있었다.

Keywords

References

  1. Dempski, R. E. Jr. and Imperiali, B. 2002. Oligosaccharyl transferase: gatekeeper to the secretory pathway. Curr. Opin. Chem. Biol. 6, 844-850 https://doi.org/10.1016/S1367-5931(02)00390-3
  2. Jun, M. H., Jun, Y. W., Kim, K. H., Lee, J. A. and Jang, D. J. 2014. Characterization of the cellular localization of C4orf34 as a novel endoplasmic reticulum resident protein. BMB Reports 47, 563-568. https://doi.org/10.5483/BMBRep.2014.47.10.252
  3. Jun, Y. W., Park, H., Lee, Y. K., Kaang, B. K., Lee, J. A. and Jang, D. J. 2016. D-AKAP1a is a signal-anchored protein in the mitochondrial outer membrane. FEBS Lett. 590, 954-961 https://doi.org/10.1002/1873-3468.12123
  4. Lee, H. and Kim, H. 2014. Membrane topology of transmembrane proteins: determinants and experimental tools. Biochem. Biophys. Res. Commun. 453, 268-276 https://doi.org/10.1016/j.bbrc.2014.05.111
  5. Lee, H., Lara, P., Ostuni, A., Presto, J., Johansson, J., Nilsson, I. and Kim, H. 2014. Live-cell topology assessment of URG7, MRP6102 and SP-C using glycosylatable green fluorescent protein in mammalian cells. Biochem. Biophys. Res. Commun. 450, 1587-1592 https://doi.org/10.1016/j.bbrc.2014.07.046
  6. Lee, J., Kim, D. H. and Hwang, I. 2014. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. Front Plant Sci. 5, 173 https://doi.org/10.3389/fpls.2014.00173
  7. Lorenz, H., Hailey, D. W., Wunder, C. and Lippincott- Schwartz, J. 2006. The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat. Protoc. 1, 276-279 https://doi.org/10.1038/nprot.2006.42
  8. Ott, C. M. and Lingappa, V. R. 2002. Integral membrane protein biosynthesis: why topology is hard to predict. J. Cell Sci. 115, 2003-2009 https://doi.org/10.1242/jcs.115.10.2003
  9. Park, S. W., Jun, Y. W., Choi, H. E., Lee, J. A. and Jang, D. J. 2019. Deciphering the molecular mechanisms underlying the plasma membrane targeting of PRMT8. BMB reports, in press
  10. Suh, B. C., Inoue, T., Meyer, T. and Hille, B. 2006. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454-1457 https://doi.org/10.1126/science.1131163
  11. Walther, D. M. and Rapaport, D. 2009. Biogenesis of mitochondrial outer membrane proteins. Biochem. Biophys. Acta 1793, 42-51. https://doi.org/10.1016/j.bbamcr.2008.04.013