References
- Arnold, M., Sierra, M. S., Laversanne, M., Soerjomataram, I., Jema,l A. and Bray, F. 2017. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66, 683-691. https://doi.org/10.1136/gutjnl-2015-310912
- Bernstein, C. N., Blanchard, J. F., Kliewer, E. and Wajda, A. 2001. Cancer risk in patients with inflammatory bowel disease: A population-based study. Cancer 91, 854-862. https://doi.org/10.1002/1097-0142(20010215)91:4<854::AID-CNCR1073>3.0.CO;2-Z
- Chen, J., Pitmon, E. and Wang, K. 2017. Microbiome, inflammation and colorectal cancer. Semin. Immunol. 32, 43-53. https://doi.org/10.1016/j.smim.2017.09.006
- Das, V., Kalita, J. and Pal, M. 2016. Predictive and prognostic biomarkers in colorectal cancer: a systematic review of recent advances and challenges. Biomed. Pharmacother. 87, 8-19.
- Eaden, J. A., Abrams, K. R. and Mayberry, J. F. 2001. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut 48, 526-535. https://doi.org/10.1136/gut.48.4.526
- Elmore, S. Apoptosis: A review of programmed cell death. 2007. Toxicol. Pathol. 35, 495-516. https://doi.org/10.1080/01926230701320337
- Francescone, R., Hou, V. and Grivennikov, S. I. 2015. Cytokines, IBD, and colitis-associated cancer. Inflamm. Bowel. Dis. 21, 409-418. https://doi.org/10.1097/MIB.0000000000000236
- Fujita, K., Iwama, H., Oura, K., Tadokoro, T., Samukawa, E., Sakamoto, T., Nomura, T., Tani, J., Yoneyama, H., Morishita, A., Himoto, T., Hirashima, M. and Masaki, T. 2017. Cancer therapy due to apoptosis: Galectin-9. Int. J. Mol. Sci. 18, pii: E74. https://doi.org/10.3390/ijms18010074
- Grivennikov, S. I. 2013. Inflammation and colorectal cancer: colitis-associated neoplasia. Semin. Immunopathol. 35, 229-244. https://doi.org/10.1007/s00281-012-0352-6
- Jang, E., Inn, K. S., Jang, Y. P., Lee, K. T. and Lee, J. H. 2018. Phytotherapeutic activities of Sanguisorba officinalis and its chemical constituents: A review. Am. J. Chin. Med. 46, 299-318. https://doi.org/10.1142/S0192415X18500155
- Keller, D. S., Windsor, A., Cohen, R. and Chand, M. 2019. Colorectal cancer in inflammatory bowel disease: review of the evidence. Tech. Coloproctol. 23, 3-13. https://doi.org/10.1007/s10151-019-1926-2
- Kim, H. J., Park, J. H. and Kim, J. K. 2014. Cucurbitacin-I, a natural cell-permeable triterpenoid isolated from Cucurbitaceae, exerts potent anticancer effect in colon cancer. Chem. Biol. Interact. 219, 1-8. https://doi.org/10.1016/j.cbi.2014.05.005
- Kim, J. K., Shin, E. K., Park, J. H., Kim, Y. H. and Park, J. H. 2010. Antitumor and antimetastatic effects of licochalcone A in mouse models. J. Mol. Med. 88, 829-838. https://doi.org/10.1007/s00109-010-0625-2
- Kim, Y. H., Kwon, H. S., Kim, D. H., Shin, E. K., Kang, Y. H., Park, J. H., Shin, H. K. and Kim, J. K. 2009. 3,3'-diindolylmethane attenuates colonic inflammation and tumorigenesis in mice. Inflamm. Bowel. Dis. 15, 1164-1173. https://doi.org/10.1002/ibd.20917
- Kundu, J. K. and Surh, Y. J. 2008. Inflammation: Gearing the journey to cancer. Mutat. Res. 659, 15-30. https://doi.org/10.1016/j.mrrev.2008.03.002
- Liu, Y. and Zeng, G. 2012. Cancer and innate immune system interactions: Translational potentials for cancer immunotherapy. J. Immunother. 35, 299-308. https://doi.org/10.1097/CJI.0b013e3182518e83
- Liu, X., Cui, Y., Yu, Q. and Yu, B. 2005. Triterpenoids from Sanguisorba officinalis. Phytochemistry 66, 1671-1679. https://doi.org/10.1016/j.phytochem.2005.05.011
- Marusawa, H. and Jenkins, B. J. 2014. Inflammation and gastrointestinal cancer: an overview. Cancer Lett. 345, 153-156. https://doi.org/10.1016/j.canlet.2013.08.025
-
Mitchell, J. P. and Carmody, R. J. 2018. NF-
${\kappa}B$ and the Transcriptional Control of Inflammation. Int. Rev. Cell Mol. Biol. 335, 41-84. https://doi.org/10.1016/bs.ircmb.2017.07.007 - Nam, S. H., Lkhagvasuren, K., Seo, H. W. and Kim, J. K. 2017. Antiangiogenic effects of ziyuglycoside II, a major active compound of Sanguisorba officinalis L. Phytother. Res. 31, 1449-1456. https://doi.org/10.1002/ptr.5874
- Nomi, N., Kodama, S. and Suzuki, M. 2010. Toll-like receptor 3 signaling induces apoptosis in human head and neck cancer via survivin associated pathway. Oncol. Rep. 24, 225-231.
- Owen, H. C., Appiah, S., Hasan, N., Ghali, L., Elayat, G. and Bell, C. 2017. Phytochemical modulation of apoptosis and autophagy: strategies to overcome chemoresistance in leukemic stem cells in the bone marrow microenvironment. Int. Rev. Neurobiol. 135, 249-278. https://doi.org/10.1016/bs.irn.2017.02.012
- Park, J. H. and Kim, J. K. 2018. Pristimerin, a naturally occurring triterpenoid, attenuates tumorigenesis in experimental colitis-associated colon cancer. Phytomedicine 42, 164-171. https://doi.org/10.1016/j.phymed.2018.03.033
- Priyadarsini, R. V. and Nagini, S. 2012. Cancer chemoprevention by dietary phytochemicals: promises and pitfalls. Curr. Pharm. Biotechnol. 13, 125-136. https://doi.org/10.2174/138920112798868610
- Siegel, R. L., Miller, K. D., Fedewa, S. A., Ahnen, D. J., Meester, R. G. S., Barzi, A. and Jemal, A. Colorectal cancer statistics, 2017. 2017. CA. Cancer J. Clin. 67, 177-193. https://doi.org/10.3322/caac.21395
- Watson, A. J. An overview of apoptosis and the prevention of colorectal cancer. 2006. Crit. Rev. Oncol. Hematol. 57, 107-121. https://doi.org/10.1016/j.critrevonc.2005.06.005
-
Zeligs, K. P., Neuman, M. K. and Annunziata, C. M. 2016. Molecular Pathways: The balance between cancer and the immune system challenges the therapeutic specificity of targeting nuclear factor-
${\kappa}B$ signaling for cancer treatment. Clin. Cancer Res. 22, 4302-4308. https://doi.org/10.1158/1078-0432.CCR-15-1374 - Zhao, Z., He, X., Zhang, Q., Wei, X., Huang, L., Fang, J. C., Wang, X., Zhao, M., Bai, Y. and Zheng, X. 2017. Traditional uses, chemical constituents and biological activities of plants from the Genus Sanguisorba L. Am. J. Chin. Med. 45, 199-224. https://doi.org/10.1142/S0192415X17500136
- Zhu, A. K., Zhou, H., Xia, J. Z., Jin, H. C., Wang, K., Yan, J., Zuo, J. B., Zhu, X. and Shan, T. 2013. Ziyuglycoside II-induced apoptosis in human gastric carcinoma BGC-823 cells by regulating Bax/Bcl-2 expression and activating caspase-3 pathway. Braz. J. Med. Biol. Res. 46, 670-675. https://doi.org/10.1590/1414-431X20133050
- Zhu, X., Wang, K., Zhang, K., Huang, B., Zhang, J., Zhang, Y., Zhu, L., Zhou, B. and Zhou, F. 2013. Ziyuglycoside II inhibits the growth of human breast carcinoma MDA-MB- 435 cells via cell cycle arrest and induction of apoptosis through the mitochondria dependent pathway. Int. J. Mol. Sci. 14, 18041-18055. https://doi.org/10.3390/ijms140918041
- Zhu, X., Wang, K., Zhang, K., Zhu, L. and Zhou, F. 2014. Ziyuglycoside II induces cell cycle arrest and apoptosis through activation of ROS/JNK pathway in human breast cancer cells. Toxicol. Lett. 227, 65-73. https://doi.org/10.1016/j.toxlet.2014.03.015