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REVERSIBLE AND PSEUDO-REVERSIBLE RINGS
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Abstract. This article concerns the structure of idempotents in reversi-

ble and pseudo-reversible rings in relation with various sorts of ring ex-

tensions. It is known that a ring R is reversible if and only if ab ∈ I(R)
for a, b ∈ R implies ab = ba; and a ring R shall be said to be pseudo-

reversible if 0 6= ab ∈ I(R) for a, b ∈ R implies ab = ba, where I(R)
is the set of all idempotents in R. Pseudo-reversible is seated between

reversible and quasi-reversible. It is proved that the reversibility, pseudo-

reversibility, and quasi-reversibility are equivalent in Dorroh extensions
and direct products. Dorroh extensions are also used to construct several

sorts of rings which are necessary in the process.

Throughout every ring is an associative ring with identity unless otherwise
stated. Let R be a ring. Use I(R), N∗(R), N∗(R), W (R), N(R), and J(R)
to denote the set of all idempotents, the upper nilradical (i.e., the sum of
all nil ideals), the lower nilradical (i.e., the intersection of all minimal prime
ideals), the Wedderburn radical (i.e., the sum of all nilpotent ideals), the set
of all nilpotent elements, and the Jacobson radical in R, respectively. Note
N∗(R) ⊆ N(R). Write I(R)′ = {e ∈ I(R) | e 6= 0}. Z(R) denotes the center
of R. The polynomial (power series) ring with an indeterminate x over R
is denoted by R[x] (R[[x]]). Z and Zn denote the ring of integers and the
ring of integers modulo n, respectively. Let n ≥ 2. Denote the n by n full
(resp., upper triangular) matrix ring over R by Matn(R) (resp., Tn(R)), and
Dn(R) = {(aij) ∈ Tn(R) | a11 = · · · = ann}. Use Eij for the matrix with (i, j)-
entry 1 and zeros elsewhere, and In denotes the identity matrix in Matn(R).
Given a set S, |S| means the cardinality of S. We use

∏
to denote the direct

product of rings.
Following Cohn [2], a ring R (possibly without identity) is called reversible

if ab = 0 for a, b ∈ R implies ba = 0. Anderson and Camillo [1] used the
term ZC2 for the reversibility. A ring (possibly without identity) is usually
said to be reduced if it has no nonzero nilpotent elements. Many commutative
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rings are not reduced (e.g., Znl for n, l ≥ 2), and there exist many noncom-
mutative reduced rings (e.g., direct products of noncommutative domains). It
is easily checked that the class of reversible rings contains commutative rings
and reduced rings. A ring (possibly without identity) is called Abelian if every
idempotent is central. It is simple to check that reversible rings are Abelian.
A ring R is usually called directly finite (or Dedekind finite) if ab = 1 for
a, b ∈ R implies ba = 1. Abelian rings are clearly directly finite. Due to Lam-
bek [12], a ring R (possibly without identity) is called symmetric if rst = 0
implies rts = 0 for all r, s, t ∈ R. Commutative rings are clearly symmetric,
and reduced rings are symmetric by [14, Lemma 1.1]. It is well-known that
the converses need not hold. By [12, Proposition 1], a ring R is symmetric if
and only if r1r2 · · · rn = 0 implies rσ(1)rσ(2) · · · rσ(n) = 0 for any permutation
σ of the set {1, 2, . . . , n}, where ri ∈ R and n is any positive integer. Symmet-
ric rings are clearly reversible, but the converse need not hold by [1, Example
I.5] or Marks [13, Examples 5 and 7]. We will use freely the symmetric ring
property of reduced rings.

1. Reversibility and pseudo-reversibility

In this section we study the structure of reversible and pseudo-reversible
rings in relation with various ring properties which have roles in ring theory.
We will prove that the reversibility, pseudo-reversibility, and quasi-reversibility
are equivalent in direct products. We first recall the equivalent conditions to
the reversibility.

Lemma 1.1. (1) For a ring R the following conditions are equivalent:
(1) R is reversible;
(2) ab ∈ I(R) for a, b ∈ R implies ba ∈ I(R);
(3) ab ∈ I(R) for a, b ∈ R implies ab = ba;
(4) ab ∈ I(R) for a, b ∈ R implies bra = braab for all r ∈ R;
(5) ab ∈ I(R) for a, b ∈ R implies ba = baab.

Proof. The equivalences of the conditions (1), (2), (3), and (4) are obtained
from [7, Proposition 1.4 and Corollary 1.5] and [8, Proposition 2.5]. (4) ⇒ (5)
is obvious. Assume (5) and let ab = 0 for a, b ∈ R. Then ba = baab = 0, and
so R is reversible. �

We consider next the case of nonzero idempotent in Lemma 1.1(3).

Definition 1.2. A ring R (possibly without identity) is called pseudo-reversible
provided that I(R)′ is empty, or else ab ∈ I(R)′ for a, b ∈ R implies ab = ba.

Reversible rings are pseudo-reversible by Lemma 1.1. We will use this fact
freely. The converse need not hold as we see later. Following Jung et al. [8],
a ring R (possibly without identity) is called quasi-reversible if ab ∈ I(R)′ for
a, b ∈ R implies ba ∈ I(R). Following Grover et al. [5], a ring is said to be
connected if I(R) = {0, 1}. Both domains and local rings are clearly connected.
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Lemma 1.3. (1) Pseudo-reversible rings are Abelian.
(2) Pseudo-reversible rings are quasi-reversible.
(3) The class of pseudo-reversible rings is closed under subrings (with or

without identity).
(4) Connected rings are pseudo-reversible.
(5) Let R be a ring with or without identity. R is pseudo-reversible if and

only if ab ∈ I(R)′ for a, b ∈ R implies ba = baab.

Proof. (1) Let R be a pseudo-reversible ring. Assume on the contrary that
there exist e ∈ I(R) and r ∈ R such that er − ere 6= 0 or re − ere 6= 0. Let
er − ere 6= 0. Then e + (er − ere) ∈ I(R)′ (otherwise, e = −er + ere implies
e = 0). Since R is pseudo-reversible, e(e+ (er− ere)) = e+ (er− ere) ∈ I(R)′

implies e+ (er − ere) = e(e+ (er − ere)) = (e+ (er − ere))e = e. This entails
er − ere = 0, contrary to er − ere 6= 0. Next re − ere 6= 0 also induces a
contradiction similarly. Thus R is Abelian.

(2) and (3) are obvious.
(4) Let R be a ring with I(R) = {0, 1}. Then R is Abelian (hence directly

finite). Let ab ∈ I(R)′ for a, b ∈ R. Then ab = 1 since I(R)′ = {1}. But R is
directly finite, so ba = 1. Thus R is pseudo-reversible.

(5) Let R be a pseudo-reversible ring and suppose that ab ∈ I(R)′ for a, b ∈
R. Then ab = ba, and so ba = ab = (ab)ab = (ba)ab.

Let R satisfy the necessity. We first claim that R is Abelian. Assume on
the contrary that there exist e ∈ I(R) and r ∈ R such that er − ere 6= 0 or
re − ere 6= 0. Let er − ere 6= 0. Then e + (er − ere) ∈ I(R)′ (otherwise,
e = −er + ere implies e = 0). Set a = e and b = e + (er − ere). Then
ab = b ∈ I(R)′. So we get ba = baab by the necessity. But ba = e 6= b = baab,
a contradiction. Letting re− ere 6= 0, we also get to a contradiction similarly.
Thus R is Abelian.

Next let ab ∈ I(R)′ for a, b ∈ R. Then ba = baab by the necessity. Since ab
is central, we have ba = ba(ab) = b(ab)a = (ba)2, entailing ba ∈ I(R). Then
ba is also central, and hence ba = (ba)ab = a(ba)b = (ab)2 = ab. Thus R is
pseudo-reversible. �

Lemma 1.3(5) can be compared with Lemma 1.1(5).
Given any reversible ring with a kind of minimal prime ideal, we can con-

struct a pseudo-reversible ring that is not reversible, via the factorization by
such an ideal. Let R be a reversible ring. Then it is easily checked that
N(R) = N∗(R) = N∗(R) = W (R). So every minimal prime ideal P of R is
completely prime (i.e., R/P is a domain) by [14, Proposition 1.11].

Given a ring A and an ideal I of A, define a ring

F3(A) =


a α1 α2

0 a α3

0 0 a

 | a ∈ A and αi ∈ A/I for all i

 ,



1260 J. HUANG, H.-L. JIN, Y. LEE, AND Z. PIAO

where the ordinary additions and multiplications of matrices are available by
using the fact that A/I is an (A,A)-bimodule.

Proposition 1.4. Let A be a reversible ring and P be a minimal prime ideal
of A satisfying P ∩ I(A) = 0. Then F3(A) is a pseudo-reversible ring but not
reversible.

Proof. Write R = F3(A). Since A is reversible, A is Abelian. We use this
fact freely. Write Ā = A/P and r̄ = r + P for r ∈ A. Note that Ā is an
(A,A)-bimodule with the operation ar̄b = ār̄b̄ for r, a, b ∈ A.

We first show that R is Abelian. Let E =
(
e b̄ c̄
0 e d̄
0 0 e

)
∈ I(R). Then e2 = e,

ēb̄ + b̄ē = b̄, ēc̄ + b̄d̄ + c̄ē = c̄, ēd̄ + d̄ē = d̄. Multiplying ēb̄ + b̄ē = b̄ by ē, we
get 2ēb̄ = ēb̄ and ēb̄ = 0 follows, entailing b̄ = 0, because Ā is a domain and

P ∩ I(A) = 0. Similarly d̄ = 0. Consequently E =
(
e 0 c̄
0 e 0
0 0 e

)
and ēc̄ + c̄ē = c̄.

Similarly c̄ = 0. Summarizing, E = eI3. This implies that R is Abelian.

Next we claim that R is pseudo-reversible. Let BC ∈ I(R)′ for B =
(
a b̄ c̄
0 a d̄
0 0 a

)
,

C =

(
a1 b̄1 c̄1
0 a1 d̄1
0 0 a1

)
∈ R. Then BC = eI3 with e ∈ I(A)′ by the preceding

argument; hence we have that aa1 = e ∈ I(A)′, and āb̄1 + b̄ā1 = 0, āc̄1 + b̄d̄1 +
c̄ā1 = 0, ād̄1 + d̄ā1 = 0. Since A is reversible, aa1 = a1a by Lemma 1.1. But
P ∩ I(A) = 0 by hypothesis, and this implies āā1 = 1̄ because R̄ is a domain
by [14, Proposition 1.11]. Multiply āb̄1 + b̄ā1 = 0 by ā1 on the left, we get

0 = ā1āb̄1 + ā1b̄ā1 = b̄1āā1 + ā1b̄ā1 = (b̄1ā+ ā1b̄)ā1

and 0 = (b̄1ā + ā1b̄)ā1ā = b̄1ā + ā1b̄ follows. Similarly ā1d̄ + d̄1ā = 0. Next
multiplying āc̄1 + b̄d̄1 + c̄ā1 = 0 by ā1 on the left, we get

0 = ā1āc̄1 + (ā1b̄)d̄1 + ā1c̄ā1 = c̄1āā1 + (−b̄1ā)d̄1 + ā1c̄ā1

= c̄1āā1 + b̄1(−ād̄1) + ā1c̄ā1 = c̄1āā1 + b̄1(d̄ā1) + ā1c̄ā1

= (c̄1ā+ b̄1d̄+ ā1c̄)ā1

and 0 = (c̄1ā + b̄1d̄ + ā1c̄)ā1ā = c̄1ā + b̄1d̄ + ā1c̄ follows. Summarizing, BC =
eI3 = CB, and therefore R is pseudo-reversible. But R is not reversible by the
computation of (1̄E12)(1̄E23) 6= (1̄E23)(1̄E12). �

Every commutative local ring with nonzero nilpotent Jacobson radical sat-
isfies the condition in Proposition 1.4. Let R be such a ring. Then D2(R)
(resp., D2(R)[x]) also satisfies the condition, in fact, J(D2(R)) = {( a b0 a } | a ∈
J(R), b ∈ R} (resp., J(D2(R))[x]) is the unique minimal prime ideal of R (resp.,
R[x]). Note that D2(R)/J(D2(R)) is a division ring.

In the following we see a relation between reversibility and pseudo-reversi-
bility via direct products.

Theorem 1.5. Let R =
∏
i∈I Ri be the direct product of rings Ri for i ∈ I.

Suppose |I| ≥ 2. Then the following conditions are equivalent:
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(1) R is pseudo-reversible;
(2) R is quasi-reversible;
(3) Ri is reversible for all i ∈ I;
(4) R is reversible.

Proof. (2) ⇒ (3). Let R be quasi-reversible and j be arbitrary in I. Assume
ab = 0 for a, b ∈ Rj . Let α = (ai) and β = (bi) be such that aj = a, bj = b,
and ai = bi = 1 for all i ∈ I with i 6= j. Then αβ = (ci) ∈ I(R)′ such that
cj = 0 and ci = 1 for all i 6= j. Since R is quasi-reversible, βα ∈ I(R). Note
that βα = (di) such that dj = ba and di = 1 for all i 6= j. So (di) ∈ I(R)
implies

ba = dj = d2
j = (ba)2 = baba = 0,

concluding that Rj is reversible.
(4) ⇒ (1) is proved by Lemma 1.1.
(1) ⇒ (2) and (3) ⇒ (4) are obvious. �

Recall that a ring R is semiperfect if R/J(R) is semisimple (i.e., R/J(R) is
Artinian) and J(R) is idempotent-lifting. Local rings are clearly semiperfect.
Following [11], an idempotent e of a given ring R is called local if eRe is a local
ring.

Theorem 1.6. (1) Let R be a semiperfect ring. If R is Abelian, then R is either
a local ring or a finite direct product of two or more local rings. Especially, R
is pseudo-reversible in the former case.

(2) Let R be a semiperfect ring. If R is pseudo-reversible, then R is either
a local ring or a finite direct product of two or more reversible local rings.
Especially, R is reversible in the latter case.

Proof. (1) Let R be Abelian. Since R is semiperfect, R contains a finite or-
thogonal set of local idempotents whose sum is 1 by [11, Corollary 3.7.2]. Say
{e1, . . . , en}. Then R =

∏n
i=1 eiR, where every eiRei is a local ring. But

since R is Abelian, eiR = eiRei for all i. Hence R is a direct product of local
rings. If n = 1, then R is a local ring. In this case, R is connected and hence
pseudo-reversible.

(2) Let R be pseudo-reversible. Then R is Abelian by Lemma 1.3(1). By
(1), R =

∏n
i=1 eiR, where every eiRei is a local ring and eiR = eiRei for all i.

If n = 1, then R is a local ring. Assume n ≥ 2. Then R is a direct product of
two or more pseudo-reversible rings. This implies, by Theorem 1.5, that every
Ri is reversible. Therefore R is reversible. �

Considering Theorem 1.6, one may ask whether semiperfect Abelian (resp.,
semiperfect pseudo-reversible) rings are pseudo-reversible (resp., reversible).
However the answers are negative as follows.

Example 1.7. (1) There exists a semiperfect Abelian ring that is not pseudo-
reversible. Let A be a division ring and R0 = A×A. Next set R = Dn(R0) for
n ≥ 3. Then R/J(R) ∼= R0 and J(R) = {(aij) ∈ R | aii = 0} is nil; hence R is
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semiperfect. Moreover R is Abelian by [6, Lemma 2]. But R ∼= Dn(A)×Dn(A),
and Dn(A) is not reversible as can be seen by E12E23 = E13 6= 0 = E23E12.
Therefore R is not pseudo-reversible by Theorem 1.5.

(2) There exists a semiperfect pseudo-reversible ring that is not reversible.
Consider R = Dn(A) over a division ring for n ≥ 3. Then R is a semiperfect
pseudo-reversible ring. But R is not reversible as above.

Now we will elaborate Lemma 1.3, asserting that the pseudo-reversibility is
seated between the reversibility and the quasi-reversibility. To do it we need
the following. Given a ring R and k ≥ 2, write Nk(R) = {a ∈ R | ak = 0}.
Note N(R) = ∪∞k=1Nk(R). It is easily checked that a ring R is reduced if and
only if N2(R) = 0.

Proposition 1.8. Let R be a ring. If D2(R) is reversible, then N2(R) ⊆ Z(R).

Proof. Suppose that D2(R) is reversible. Then R is reversible clearly. Let
a ∈ N2(R) and b ∈ R. Consider two matrices

A =

(
ba b
0 ba

)
and B =

(
a −1
0 a

)
in D2(R). Then AB = 0 because a2 = 0. Since D2(R) is reversible, we get
BA =

(
0 ab−ba
0 0

)
= 0 and ab − ba = 0 follows, noting that ba2 = 0 implies

aba = 0 by the reversibility of R. Thus ab = ba and a ∈ Z(R). �

This result is not valid to the case of D2(R) being pseudo-reversible. In fact,
considering R = Dn(A) over a domain A for n ≥ 3, D2(R) is pseudo-reversible
by Lemma 1.3(4) and The argument in [10, Example 1.7] can be simplified by
Proposition 1.8 as we see in the following.

Example 1.9. (1) There exist pseudo-reversible rings but not reversible.
(i) We follow the construction in [10, Example 2.1]. Let

A = Z2〈a0, a1, a2, b0, b1, b2, c〉
be the free algebra generated by noncommuting indeterminates a0, a1, a2,
b0, b1, b2, c over Z2; and set B = {f ∈ A | the constant term of f is zero}.
Next let I be the ideal of A generated by a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0,
a1b2 +a2b1, a2b2, a0rb0, a2rb2, b0a0, b0a1 +b1a0, b0a2 +b1a1 +b2a0, b1a2 +b2a1,
b2a2, b0ra0, b2ra2, (a0 + a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2),
and r1r2r3r4, where r, r1, r2, r3, r4 ∈ B. Set R = A/I. Then R is reversible but
R[x] is not reversible by [10, Example 2.1]. By [9, Lemma 8], I(R) = I(R[x])
because R is Abelian. Moreover I(R) = {0, 1} by [8, Example 2.1]. Thus R[x]
is pseudo-reversible by Lemma 1.3(4).

(ii) Let R = Dn(A) for n ≥ 3 over a reduced ring A with I(A) = {0, 1}.
Then I(R) = {0, In} by [6, Lemma 2]; hence R is pseudo-reversible by Lemma
1.3(4). But R is not reversible by [10, Example 1.5].

(iii) We use the construction and argument in [10, Example 1.7]. Let H
be the Hamilton quaternions over the real number field and R0 = D2(H).
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Then R0 is an Abelian ring with I(R0) = {0, 1} by [6, Lemma 2]. Moreover
I(D2(R0)) = {0, 1} also by [6, Lemma 2]. So D2(R0) is pseudo-reversible by
Lemma 1.3(4). However D2(R0) is not reversible by Proposition 1.8 because
N2(R0) = ( 0 H

0 0 ) is not contained in Z(R0) as can be seen by (iE12)(jI2) =
kE12 6= (−k)E12 = (jI2)(iE12).

(2) There exists an Abelian ring that is not pseudo-reversible. Let R1 be
a pseudo-reversible ring that is not reversible (e.g., R[x] in (1)) and R2 be a
reversible ring. Then R = R1 × R2 is Abelian, but not pseudo-reversible by
Theorem 1.5.

(3) There exist quasi-reversible rings which are not pseudo-reversible.
(i) Mat2(Z2) is quasi-reversible by [8, Theorem 1.8], but this ring is clearly

not Abelian (hence not pseudo-reversible by Lemma 1.3(1)).
(ii) Consider T2(R) over a reversible ring R with I(R) = {0, 1}. Then T2(R)

is quasi-reversible by [8, Theorem 1.4]. But T2(R) is clearly not Abelian, and
so T2(R) is not pseudo-reversible by Lemma 1.3(2).

If R is a reduced ring, then D2(R) is reversible; but the converse need not
hold. In fact, D2(Zmn) is commutative but Zmn is not reduced, where m,n ≥ 2.
One may conjecture that D2(R) is pseudo-reversible over a (pseudo-)reversible
ring R. However the answer is negative as we see in the following.

Example 1.10. Let R be an Abelian ring and suppose that AB ∈ I(D2(R))′

for A = ( a a10 a ), B =
(
b b1
0 b

)
in D2(R). Then ab ∈ I(R)′ and ab1 + a1b = 0

by [6, Lemma 2]. Here, assuming that D2(R) is pseudo-reversible, R is also
pseudo-reversible by Lemma 1.3(3). So ab = ba, and moreover R is Abelian by

Lemma 1.3(1). Then every nonzero idempotent of D2(R) is of the form
(
f 0
0 f

)
with f ∈ I(R)′ by [6, Lemma 2].

Suppose ba1 + b1a 6= 0. Then BA =
(
ab ba1+b1a
0 ab

)
/∈ I(D2(R)), and hence

D2(R) is not pseudo-reversible. We will show the existence of such example.
We apply the construction and argument in [10, Example 1.7]. Let H be the
Hamilton quaternions over the real number field and R0 = H × H. Next set
R = D2(R0). Then R is reversible by [10, Proposition 1.6] because R0 is
reduced. Now consider D2(R). Let

A =


(

(1, 0) (0, i)
(0, 0) (1, 0)

) (
(0, j) (0, 0)
(0, 0) (0, j)

)
(

(0, 0) (0, 0)
(0, 0) (0, 0)

) (
(1, 0) (0, i)
(0, 0) (1, 0)

)
 and B =


(

(1, 0) (0, 1)
(0, 0) (1, 0)

) (
(0, k) (0, 0)
(0, 0) (0, k)

)
(

(0, 0) (0, 0)
(0, 0) (0, 0)

) (
(1, 0) (0, 1)
(0, 0) (1, 0)

)


in D2(R). Then

AB =


(

(1, 0) (0, 0)
(0, 0) (1, 0)

) (
(0, 0) (0, 0)
(0, 0) (0, 0)

)
(

(0, 0) (0, 0)
(0, 0) (0, 0)

) (
(1, 0) (0, 0)
(0, 0) (1, 0)

)
 ∈ I(D2(R))′.
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But

BA =


(

(1, 0) (0, 0)
(0, 0) (1, 0)

) (
(0, 0) (0, 2j)
(0, 0) (0, 0)

)
(

(0, 0) (0, 0)
(0, 0) (0, 0)

) (
(1, 0) (0, 0)
(0, 0) (1, 0)

)
 /∈ I(D2(R))

because 2j 6= 0. Therefore D2(R) is not pseudo-reversible.

Example 1.10 also says that I(R) = {0, 1} in Lemma 1.3(4) is a kind of neat
condition for R to be pseudo-reversible, when R is a noncommutative ring.

Following [4], a ring R is said to be von Neumann regular if for each a ∈ R
there exists b ∈ R such that a = aba. Every von Neumann regular ring is
clearly semiprimitive.

Proposition 1.11. Let R be a von Neumann regular ring. Then the following
conditions are equivalent: (1) R is reduced; (2) R is reversible; (3) R is pseudo-
reversible; (4) R is Abelian.

Proof. (1)⇒ (2) is obvious. (2)⇒ (3) and (3)⇒ (4) are shown by Lemma 1.1
and Lemma 1.3(1), respectively. (4) ⇒ (1) is shown by [4, Theorem 3.2]. �

But the quasi-reversibility need not be a condition in Proposition 1.11. In
fact, considering R = Mat2(Z2), R is quasi-reversible by [8, Theorem 1.8] and
clearly von Neumann regular; but R is not Abelian.

The pseudo-reversibility does not go up to polynomial rings by the following.

Example 1.12. There exists a reversible ring over which the polynomial ring
is not reversible as we see in Example 1.9(1). Let R1 be the reversible ring
R in Example 1.9(1), and R2 be any reversible ring. Next set R = R1 × R2.
Then R is clearly reversible (hence pseudo-reversible). Consider R[x] and note
R[x] ∼= R1[x]×R2[x]. Since R1[x] is not reversible, R[x] is not quasi-reversible
by Theorem 1.5.

In fact, let

f(x) = (a0, 1) + (a1, 0)x+ (a2, 0)x2 and g(x) = (b0c, 1) + (b1c, 0)x+ (b2c, 0)x2

in R[x], where a0, a1, a2, b0, b1, b2, c are identified with the images in R1 for
simplicity. Then f(x)g(x) = (0, 1) ∈ I(R[x])′. But

g(x)f(x) = ((b0c, 1) + (b1c, 0)x+ (b2c, 0)x2)((a0, 1) + (a1, 0)x+ (a2, 0)x2)

= (0, 1) + (b0ca1 + b1ca0, 0)x+ · · · /∈ I(R[x])

because b0ca1 + b1ca0 6= 0, and R being Abelian implies I(R) = I(R[x]) by
[9, Lemma 8]. Therefore R[x] is not pseudo-reversible.

We will find conditions under which the pseudo-reversibility can go up to
polynomial rings.

Proposition 1.13. (1) If R is a connected ring, then R[x] is connected (hence
pseudo-reversible).

(2) If R is a connected ring, then R[[x]] is connected (hence pseudo-reversible).
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Proof. (1) If I(R) = {0, 1}, then R is Abelian and we also have I(R[x]) = {0, 1}
by [9, Lemma 8]. Then R[x] is pseudo-reversible by Lemma 1.3(4).

The proof of (2) is almost same as one of (1). �

Next we construct a kind of pseudo-reversible ring from connected rings
which have ideals I satisfying I2 = 0.

Proposition 1.14. Let R be a ring, n ≥ 2, and I be an ideal of R satisfying
I2 = 0. Define

En(R)={(aij)∈Matn(R) | aij ∈ I for all i, j with i 6= j, and a11 = · · ·=ann}.

(1) Let R be an Abelian ring. Then every idempotent in En(R) is of the
form eIn with e ∈ I(R), and En(R) is an Abelian ring.

(2) If R is a connected ring, then En(R) is a connected ring. Especially
En(R) is a pseudo-reversible ring.

Proof. (1) Let R be Abelian. We first observe the form of idempotents in
En(R). We will proceed by induction on n. In the procedure we use the
condition of R being Abelian freely.

Let A = ( e ab e ) ∈ I(E2(R))′. Then clearly e 6= 0, and
(

e2 ea+ae
be+eb e2

)
= ( e ab e ),

entailing e2 = e, ea + ae = a, and be + eb = b. Multiplying ea + ae = a by
e, we obtain ae = 0 and a = 0 follows. Similarly b = 0. Hence A = eI2 with
e ∈ I(R)′.

Let A =
(

e a12 a13
a21 e a23
a31 a32 e

)
∈ I(E3(R))′. Clearly e 6= 0. Write A1 = ( e a12

a21 e )

and A2 = ( e a23
a32 e ). Then A1, A2 ∈ I(E2(R)) because A2 = A. So A1 = A2 =

eI2 by the result in the case of n = 2. Consequently A =
(

e 0 a13
0 e 0
a31 0 e

)
, and

ea13 + a13e = a13, ea31 + a31e = a31. Multiplying this equality by e, we get
ea13 = 0 and a13 = 0 follows. Similarly a31 = 0. Thus A = eI3 with e ∈ I(R)′.

Consider the case of n ≥ 4. Let A = (aij) ∈ I(En(R))′ such that e = aii
for all i. Write A1 = (blm), A2 = (cst) ∈ En−1(R) where blm = aij with
l = i, m = j for 1 ≤ i, j ≤ n − 1, and cst = aij with s = i − 1, t = j − 1
for 2 ≤ i, j ≤ n. From A2 = A, we get A2

1 = A1 and A2
2 = A2. So, by

the induction hypothesis, we get A1 = eIn−1 = A2; hence A =
(
A1 B
C e

)
with

B =

( a1n
0
...
0

)
∈ Mat(n−1)×1(R), C = ( an1 0 ··· 0 ) ∈ Mat1×(n−1)(R). It then

follows that ea1n + a1ne = a1n and ean1 + an1e = an1, from A2 = A. Similarly
we get a1n = 0 = an1. Thus A = eIn with e ∈ I(R)′.

This result implies that En(R) is also Abelian.
(2) is an immediate consequence of (1). �

The condition in Proposition 1.14 can be found in many rings. For example,
every local ring with nonzero nilpotent Jacobson radical (e.g., Zpn , p is a prime
and n ≥ 2) satisfies the condition.
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2. Dorroh extensions

In this section we study the structure of Dorroh extensions in relation with
pseudo-reversible and reversible rings. In the procedure we also deal with the
case of without identity for our purpose. In fact we will prove that the re-
versibility, pseudo-reversibility, and quasi-reversibility are equivalent in Dorroh
extensions when given rings have identities.

We first obtain the following basic facts which can be compared with Lemma
1.3.

Lemma 2.1. (1) Let R be a ring without identity. If R is reversible, then R
is pseudo-reversible.

(2) Let R be a ring without identity. If R is pseudo-reversible, then R is
Abelian.

Proof. (1) Let R be a reversible ring with I(R)′ 6= ∅. We first show that R is
Abelian. Assume on the contrary that there exist e ∈ I(R) and r ∈ R such
that er − ere 6= 0 or re − ere 6= 0. But (er − ere)e = 0 and e(re − ere) = 0
implies er − ere = e(er − ere) = 0 and re− ere = (re− ere)e = 0, contrary to
the assumption. Thus R is Abelian.

Suppose ab ∈ I(R)′. Then ab = abab yields a(b − bab) = 0. Since R is
reversible, (b− bab)a = 0 and ba = (ba)2 follows. Since R is Abelian, we have
ba = baba = abba = abab = ab. Thus R is pseudo-reversible.

(2) The proof of Lemma 1.3(1) is applicable to this case. �

By Lemma 2.1 or the proof of Lemma 2.1(1), reversible rings without iden-
tity are also Abelian. A pseudo-reversible ring without identity is also quasi-
reversible by definition. When given a ring does not have an identity, we also
have the following that is almost same as Lemma 1.1.

Proposition 2.2. (1) For a ring R without identity, the following conditions
are equivalent:

(1) R is reversible;
(2) ab ∈ I(R) for a, b ∈ R implies ba ∈ I(R);
(3) ab ∈ I(R) for a, b ∈ R implies ab = ba;
(4) ab ∈ I(R) for a, b ∈ R implies ba = baab.

Proof. (1) ⇒ (3). The proof is almost same as one of Lemma 2.1(1). (3) ⇒
(2) and (3) ⇒ (4) are obvious.

(2) ⇒ (1). Let ab = 0. Then ba = baba = 0 by the condition (2), so R is
reversible. The proof of (4) ⇒ (1) is similar to one of (2) ⇒ (1). �

Considering Lemma 1.1, one may conjecture that a ring R is reversible if
and only if ab ∈ I(R) for a, b ∈ R implies bra = braab for all r ∈ R, even
though R does not have an identity. But the following erases the possibility.

Example 2.3. We first claim that if R is a reversible ring without identity,
then ab ∈ I(R) for a, b ∈ R implies bra = braab for all r ∈ R. Assume the
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sufficiency. Let ab ∈ I(R) for a, b ∈ R. Then a(b − bab)r = 0 for all r ∈ R,
and so (b − bab)ra = 0; hence bra = babra. But R is Abelian by Lemma 2.1,
so bra = babra = braab.

However the converse need not hold. Let A = Z8 and B = 2Z8. Consider
R = (B B

0 0 ), a subring of T2(A). Then R is not reversible as can be seen
by (2E11)(2E12) = 4E12 6= 0 = (2E12)(2E11). Let ab ∈ I(R) for a, b ∈ R.
Then ab = 0 since R3 = 0 (hence R = N(R)). Moreover R3 = 0 implies
bra = 0 = braab for all r ∈ R. Therefore R satisfies the necessity.

Next we observe the structure of Abelian rings without identity in relation
with a kind of ring extensions. Let A be an algebra (with or without identity)
over a commutative ring S. Due to Dorroh [3], the Dorroh extension of A by
S is the Abelian group A × S with multiplication given by (r1, s1)(r2, s2) =
(r1r2 + s1r2 + s2r1, s1s2) for ri ∈ A and si ∈ S. We use A ×dor S to denote
this extension. The characteristic of a given ring R is denoted by ch(R).

Proposition 2.4. (1) Let A be an Abelian ring with or without identity. Then
A×dor Z is an Abelian ring.

(2) Let A be an Abelian ring with or without identity with ch(A) = 2. Then
A×dor Z2 is an Abelian ring.

Proof. Let R = A×dorZ and suppose that (a, n)2 = (a, n) for (a, n) ∈ R. Then
a2 + 2na = a and n2 = n. From n2 = n, we get n = 0 or n = 1.

Let n = 0. Then a2 = a. Since A is Abelian, a ∈ Z(A) and hence

(a, 0)(r,m) = (ar +ma, 0) = (ra+ma, 0) = (r,m)(a, 0)

for all (r,m) ∈ R.
Let n = 1. Then a2 + 2a = a and a2 = −a. This implies (−a)2 = a2 = −a,

i.e., −a ∈ I(A). Since A is Abelian, −a ∈ Z(A) and a ∈ Z(A) follows. This
yields

(a, 1)(r,m) = (ar +ma+ r,m) = (ra+ma+ r,m) = (r,m)(a, 1)

for all (r,m) ∈ R.
Therefore R is Abelian.
(2) Let R = A×dorZ2 and suppose that (a, n)2 = (a, n) for (a, n) ∈ R. Then

a = a2 + 2na = a2 (i.e., a ∈ I(A)) because ch(A) = 2. Since A is Abelian,
a ∈ Z(A) and hence

(a, n)(r,m) = (ar +ma+ nr, nm) = (ra+ma+ nr,mn) = (r,m)(a, n)

for all (r,m) ∈ R. Thus R is Abelian. �

Pseudo-reversible rings are Abelian by Lemma 2.1. So one may conjecture
that the Dorroh extension of a pseudo-reversible ring without identity by Z is
pseudo-reversible. But the following provides us with counterexamples.

Example 2.5. There exists a reversible ring without identity over which the
Dorroh extension by Z is not quasi-reversible (hence not pseudo-reversible). To
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see this, we apply [13, Example 4]. Let A = Z4〈x, y〉 be the free algebra with
noncommuting indeterminates x, y over Z4. Let I be the ideal of A generated
by x2, xy + 2x, 2yx, y2x. Set A1 = A/I. We identify x, y with their images
in A1 for simplicity. Next set A2 = A1x + A1y. Then A2 is a reversible ring
without identity by the argument in [13, Example 4].

Now let R0 = A2 × Z2. Then R0 is also a reversible ring without identity.
Next consider R = R0 ×dor Z. Take

α = ((x, 1), 0) and β = ((y, 1), 2)

in R. Then

αβ = ((xy, 1) + (2x, 0), 0) = ((xy + 2x, 1), 0) = ((0, 1), 0) ∈ I(R)′.

But

βα = ((y, 1), 2)((x, 1), 0) = ((yx, 1) + (2x, 0), 0) = ((yx+ 2x, 1), 0) /∈ I(R)′

because yx+2x 6= 0 and (yx+2x)2 = yxyx+2yx2 +2xyx+4x2 = y(2x)x = 0.
Therefore R is not quasi-reversible.

However we obtain an affirmative result when given rings have identities by
help of [13, Proposition 3]. Recall that the reversibility and pseudo-reversibility
are equivalent in direct products by Theorem 1.5. In the following we see
another kind of extension in which the equivalence of reversibility and pseudo-
reversibility is possible.

Theorem 2.6. Let A be a ring with identity. Then the following conditions
are equivalent:

(1) A×dor Z is pseudo-reversible;
(2) A×dor Z is quasi-reversible;
(3) A is reversible;
(4) A×dor Z is reversible.

Proof. Let R = A ×dor Z. (2) ⇒ (3). Suppose that ab = 0 for a, b ∈ A. Set
a0 = a− 1 and b0 = b− 1. Then, for (a0, 1), (b0, 1) ∈ R, we have

(a0, 1)(b0, 1) = (a0b0 + a0 + b0, 1) = (ab− a− b+ 1 + a+ b− 2, 1) = (−1, 1).

But (−1, 1) ∈ I(R)′. Since R is quasi-reversible, (b0a0+a0+b0, 1)=(b0, 1)(a0, 1)
∈ I(R). Then we get (b0a0 + a0 + b0)2 = −(b0a0 + a0 + b0) by the proof of
Proposition 2.4(1). Furthermore we have

(b0a0 + a0 + b0 + 1)2

= b0a0b0a0 + b0a
2
0 + b0a0b0 + b0a0 + a0b0a0 + a2

0 + a0b0 + a0

+ b20a0 + b0a0 + b20 + b0 + b0a0 + a0 + b0 + 1

= b0(a0b0 + a0 + b0 + 1)a0 + b0(a0b0 + a0 + b0 + 1)

+ (a0b0 + a0 + b0 + 1)a0 + (a0b0 + a0 + b0 + 1) = 0,
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because a0b0 + a0 + b0 = −1 as above. This yields

0 = (b0a0 + a0 + b0 + 1)2

= (b0a0 + a0 + b0)2 + 2(b0a0 + a0 + b0) + 1

= −(b0a0 + a0 + b0) + 2(b0a0 + a0 + b0) + 1

= (b0a0 + a0 + b0) + 1,

entailing b0a0 + a0 + b0 = −1 = a0b0 + a0 + b0. Then a0b0 = b0a0. This result
gives us (a − 1)(b − 1) = (b − 1)(a − 1) and ba = ab = 0 follows. Thus A is
reversible.

(3) ⇒ (4) is proved by [13, Proposition 3], and (4) ⇒ (1) is obtained from
Lemma 1.1. (1) ⇒ (2) is obvious. �

Note that I(Zn) = {0, 1} when n is prime, but I(Zn) ) {0, 1} may arise
when n is not prime (e.g., I(Z6) = {0, 1, 3, 4}). So we take I(Zn) = {0, 1} as a
condition in the following to apply the proof of Theorem 2.6.

Proposition 2.7. Let A be a ring with identity and n ≥ 2. Suppose that
ch(A) = n and I(Zn) = {0, 1}. Then the following conditions are equivalent:

(1) A×dor Zn is pseudo-reversible;
(2) A×dor Zn is quasi-reversible;
(3) A is reversible;
(4) A×dor Zn is reversible.

Proof. Let R = A×dorZn and (f, l) ∈ I(R) for (f, l) ∈ R. Since I(Zn) = {0, 1},
l is either 0 or 1. Then the proof of Theorem 2.6 is applicable. �

In the following we see concrete shapes of idempotents of A×dorZ in Theorem
2.6.

Remark 2.8. Let R = A ×dor Z and suppose that (a,m)(b, n) ∈ I(R)′ for
(a,m), (b, n) ∈ R. Then (ab + na + mb,mn) ∈ I(R)′, and mn is zero or 1.
Notice that Z ⊆ A because 1 ∈ A. R is Abelian by Proposition 2.4 because
A is Abelian by Lemma 1.3(1). If ab + na + mb = 0, then mn = 1 because
(a,m)(b, n) ∈ I(R)′; hence (a,m)(b, n) = (0, 1) = 1 implies (b, n)(a,m) = 1
because R is directly finite, entailing (a,m)(b, n) = (b, n)(a,m). Thus we will
deal with the case of ab+ na+mb 6= 0.

Consider the case of mn = 0 (i.e., m = 0 or n = 0). Here we must have
ab + na + mb ∈ I(A)′ because (ab + na + mb, 0) ∈ I(R)′. Let m = 0. Then
a(b+n) ∈ I(A)′, and since A is pseudo-reversible, we have a(b+n) = (b+n)a.
This yields ab = ba, and so (a,m)(b, n) = (b, n)(a,m). The computation for
the case of n = 0 is similar.

Consider the case of mn = 1 (i.e., m = n = 1 or m = n = −1). Let
m = n = 1. Then (ab+ a+ b, 1) ∈ I(R)′, and this yields

(ab+ a+ b)2 = −(ab+ a+ b).
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From this equality, we get

((ab+ a+ b) + 1)2 = (ab+ a+ b)2 + 2(ab+ a+ b) + 1

= −(ab+ a+ b) + 2(ab+ a+ b) + 1

= (ab+ a+ b) + 1,

entailing (ab+ a+ b) + 1 ∈ I(A). Note ab+ a+ b+ 1 = (a+ 1)(b+ 1). Since A
is reversible, we get (a+ 1)(b+ 1) = (b+ 1)(a+ 1) by Lemma 1.1. This yields
ab = ba, and (a,m)(b, n) = (b, n)(a,m) follows.

Let m = n = −1. Then (ab− a− b, 1) ∈ I(R)′, and this yields

(ab− a− b)2 = −(ab− a− b).

From this equality, we get

((ab− a− b) + 1)2 = (ab− a− b)2 + 2(ab− a− b) + 1

= −(ab− a− b) + 2(ab− a− b) + 1

= (ab− a− b) + 1,

entailing (ab− a− b) + 1 ∈ I(A). Note ab− a− b+ 1 = (a− 1)(b− 1). Since A
is reversible, we get (a− 1)(b− 1) = (b− 1)(a− 1) by Lemma 1.1. This yields
ab = ba, and (a,m)(b, n) = (b, n)(a,m) follows.

If A is a commutative ring with or without identity, then clearly A ×dor Z
is commutative. Considering Theorem 2.6, one may ask whether 1 ∈ A is a
necessary condition for A×dorZ to be reversible. But the answer is negative as
we see in the following. Theorem 2.6 can be applied in constructing a reversible
ring A×dor Z with 1 /∈ A.

Example 2.9. Let A0 be a reversible ring with identity and A1 = A0 ×dor Z.
Then A1 is a reversible ring with identity by Theorem 2.6. Next consider
A2 = A1 ×dor Z, and set Ak+1 = Ak ×dor Z for k ≥ 1. Then, for all n ≥ 1, An
is a reversible ring with identity inductively, by help of Theorem 2.6. Define a
map σ : Ak → Ak+1, defined by (ak,mk) 7→ ((ak,mk), 0), for all k ≥ 1. Then
σ is clearly a monomorphism and so Ak is considered as a subring of Ak+1 via
σ. Now let A =

⋃∞
i=1Ai and R = A×dor Z. We will show that R is a reversible

ring.
Let (a,m)(b, n) = 0 for (a,m), (b, n) ∈ R. Then there exists k ≥ 1 such that

a, b ∈ Ak. Note Ak = Ak−1 ×dor Z and that Ak is reversible.
From (a,m)(b, n) = 0, we get ab + na + mb = 0 and mn = 0 (hence m = 0

or n = 0).
Assume m = 0. Then ab + na = 0 and so a(b + n) = 0. But since Ak is

reversible, we get (b + n)a=0 and (b, n)(a,m) = 0. The computation for the
case of n = 0 is similar.

ThereforeR is a reversible ring. HoweverA does not have an identity because
every element a of A is an element of Ak for some k ≥ 1 and a cannot be the
identity of Ak+1, noting a = σ(a) = (a, 0).
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Using the Dorroh extension, we can always construct a reduced ring with
identity, which is not a domain, over any nonzero domain of nonzero charac-
teristic with or without identity.

Remark 2.10. Let A be a domain of nonzero characteristic p with or without
identity, where |A| ≥ 2. Then p is clearly prime. Consider R = A ×dor Z.
Take elements u = (a, 0) and v = (0, p) in R, where a 6= 0. Then u, v ∈ R\{0}
clearly. But uv = (pa, 0) = 0, concluding that R is not a domain. Next assume
(b,m)k = 0 for some (b,m) ∈ R and k ≥ 2. Then m = 0 and bk = 0 follows.
But since A is a domain, we get b = 0; hence (b,m) = 0. Therefore R is a
reduced ring with identity.

Let R be the reduced ring A×dor Z in Remark 2.10. Then B = D2(R) is a
reversible ring with identity by Proposition 1.8. Next consider E = B ×dor Z.
Then E is also a (pseudo-)reversible ring by Theorem 2.6. Clearly E is not
reduced. Therefore, over any nonzero domain of nonzero characteristic with or
without identity, we can construct a non-reduced reversible ring with identity,
via Dorroh extensions.
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