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A FINANCIAL MARKET OF

A STOCHASTIC DELAY EQUATION

Ki-Ahm Lee, Kiseop Lee, and Sang-Hyeon Park

Abstract. We propose a stochastic delay financial model which de-

scribes influences driven by historical events. The underlying is modeled
by stochastic delay differential equation (SDDE), and the delay effect is

modeled by a stopping time in coefficient functions. While this model
makes good economical sense, it is difficult to mathematically deal with

this. Therefore, we circumvent this model with similar delay effects but

mathematically more tractable, which is by the backward time integra-
tion. We derive the option pricing equation and provide the option price

and the perfect hedging portfolio.

1. Introduction

While many stock price models such as the Black Scholes assume the Markov
property and/or stationary and independent increments of returns, empirical
studies suggest that the stock price has short term memories and feedback ef-
fects. There are a few approaches to capture this phenomenon. One popular
approach is to use a fractional Brownian motion. Fractional Brownian mo-
tion still has stationary increments, but increments are no longer independent.
While a model based on a fractional Brownian motion is certainly one way to
address, a fatal drawback is that the price process is not a semimartingale, so
the conventional asset pricing theory cannot be applied. Nevertheless, there are
rich collection of literature on asset pricing with fractional Brownian motions,
circumventing this difficulty in various ways. There are examples of stochastic
processes with stationary but dependent increments, as introduced in [1, 2],
[10], but they are a little too much complicated to be used as an asset pricing
model.

Models with dependent or non-stationary increments are common in time
series studies, although the time is always discrete in time series studies while
we are dealing with continuous time models. ARCH, GARCH models fall to this
category. So, it seems that it is natural to consider a continuous time version
of GARCH model, which may be called ‘COGARCH’. There have been several
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attempts to generalize GARCH to a continuous time, and some are potentially
useful as an asset pricing model. About detailed history of a continuous time
GARCH model, we refer to a nice summary in [3], [11] and [12]. While this
COGARCH approach has certain desirable properties, its sampled discrete
process does not in general possess GARCH properties. So it becomes just
a little complicated stochastic volatility model, and is not so satisfactory in our
purpose.

This short term dependency is sometimes called a feedback effect, since past
stock prices give feedback to the current price. [13] studied a jump diffusion
model where the jump intensity gets instantaneous feedback from the current
stock price. [8] studied regime switching models with feedback effects. [9]
studied market volatility and feedback effects. Those feedback effect models
give the dependency of the certain part of the price process such as jumps to
the past price process, but do not give the dependency all the way through.

Our approach is to use a stochastic delay differential equation which, unlike
a feedback model, gives continuous effects from the past price processes, as the
one in [16]. The main difficulty of this approach is that while the model makes
sense, it is mathematically very difficult to deal with. Especially, the proposed
model is not Markov and the market is incomplete. In this paper, we study a
modified version of the original stochastic delay equation. The main idea is to
replace a realization of a random point on the interval with a time integration
with respect to a certain density. While this modified one is not same as the
original delayed equation, we believe that this still captures the main idea of
the delay effect.

The rest of the paper is organized as follows. In Chapter 2, we introduce the
model and justifies the existence and uniqueness of the solution. In Chapter
3, we find the equivalent martingale measure. We also discuss a new dynamic
of the model under the changed measure. Chapter 4 discusses the Markov
property and its infinitesimal generator. Chapter 5 gives the price of European
options.

2. Model

For convenience, we assume that the spot rate of interest is zero. Let us
consider the price process which follows the stochastic delay model given by

dSt = µα(St−τ̃t)dt+ σβ(St−τ̃t)dWt, 0 < t ≤ T <∞,
St = φ(t), −s̃ ≤ t ≤ 0

(2.1)

on a probability space (Ω,F ,P) with a filtration (Ft) satisfying the usual con-
ditions. Here µ, σ, and s are positive constants and Wt is a standard Brownian
motion on P. Functions α(·) and β(·) are globally Lipschitz continuous. The
initial data is given by φ(t), which is cadlag for −s̃ ≤ t ≤ 0. Here, we assume
that S0 = φ(0) > 0. We also assume that the stopping process τ̃t is a strong
Markov process with initial value τ0, and Lτ is its infinitesimal generator. In
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addition, the process τ̃t has a probability density P (τ̃t ∈ ds) = kt(s)ds for all
t. Note that kt(s) is the continuous transition probability density function on
[0, t+ s̃].

This model captures the short term dependency structure through the stop-
ping time τ̃t. In other word, the dynamic of the current price process depends
on the price at the previous time t− τ̃t. The delay stopping time τ̃t should be
determined by the market. While this model makes sense, it is practically diffi-
cult to even find a solution of the equation. Also, the lack of Markov property
makes subsequent mathematical formulation more difficult. Therefore, we try
to modify this to make calculation doable while still keeping the spirit of the
short term dependency. The idea is to replace τ̃t with the integration on the
interval [−s̃, t].

Instead of (2.1) let us consider the following modified equation.
(2.2)

dSt = µα(

∫ t

−s̃
Su pt(du))dt+ σβ(

∫ t

−s̃
Su pt(du))dWt, −s̃ < 0 < t ≤ T <∞,

where pt is a measure at t with a smooth function f(t, u), i.e.,

pt(du) = f(t, u)du

for u ∈ [−s̃, t]. For example, if pt is a uniform probability measure with density

f(t, u) = 1/(t+ s̃), then
∫ t
−s̃ Su pt(du) is represented by 1

t+s̃

∫ t
−s̃ Sudu.

Let us define τt := t − τ̃t, for the notational simplicity and set pt(du) be
a probability measure of τt. Then, the vector process (St, At) becomes an
expected delay time model where

At :=

∫ t

−s̃
Su pt(du) =

∫ t

−s̃
Su f(t, u)du.

The financial meaning of (2.2) is that the model has a delay effect as a weighted
average by τt. Therefore, the integration with respect to pt(u) captures the
effect of the random delay time τ̃ .

A typical example of the process τt is a fixed constant. In this case, f(t, u)
becomes a Dirac delta function δu0

(u) for −s̃ ≤ u0 ≤ t. As a choice of the
density of τt, [4] introduced a rich family of bounded stochastic processes. Mo-
tivated by their work, we assume that the dynamic of τt follows the stochastic
differential equation:

(2.3) dτt = −γτtdt+D(τt)dBt,

where Bt is a Brownian motion independent of Wt and

D2(x) = − 2γ

FX(x)

∫ x

−s̃
θ FX(θ)dθ,

and FX(x) is a desired density on [−s̃, t].
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By the Itô formula, we derive the infinitesimal generator Lτt of τt = u,

(2.4) Lτt := −γu ∂

∂u
+

1

2
D2(u)

∂2

∂u2
.

One reasonable choice of FX(x) is the uniform distribution, when FX(x) =
1
t+s̃1(−s̃,t)(x). We refer to Section 3.1 of [4] for detailed procedure to pick a
density.

Then f(t, u) becomes the solution of PDE

∂f

∂t
(t, u) + Lτtf(t, u) = 0,

f(0, u) = δτ0(u).
(2.5)

In general, ∂mf
∂tm for m ≥ 1 is not an element of function space C0(R2). This

makes it difficult to prove the Markov property of our problem. Therefore, we
impose an additional assumption on f(t, u) below.

Assumption 2.1. There exists an integer m̃ ≥ 2 such that ∂m̃f
∂tm̃ = 0 and

∂mf
∂tm ∈ C0([0,∞)× [−s̃, t]) for all integer m̃ > m ≥ 1.

Assumption 2.1 implies that we can convert our problem into a finite di-
mensional problem. Since f(t, u) is a probability density function on [−s̃, t],
Assumption 2.1 is not a strong condition and should be satisfied in most rea-
sonable cases.

The next theorem gives us the existence and uniqueness of the solution of
SDDE (2.2).

Theorem 2.1. SDDE (2.2) has an a.s. continuous adapted solution St, 0 <
t ≤ T and it is unique.

Proof. The basic idea of the proof is to apply basic existence arguments. Define
the process,

dS
(i+1)
t = µα(

∫ t

−s̃
S(i)
u pt(du))dt+ σβ(

∫ t

−s̃
S(i)
u pt(du))dWt,

S
(i+1)
t = φ(t), −s̃ ≤ t ≤ 0,

(2.6)

for 0 < t and i = 0, 1, . . .. Since α and β are globally Lipschitz continuous, by
the Hölder inequality and the Itô isometry, we have

E[|S(i+1)
t − S(i)

t |2](2.7)

= E[|
∫ t

0

µα(

∫ s

−s̃
S(i)
u ps(du))ds+

∫ t

0

σβ(

∫ s

−s̃
S(i)
u pt(du))dWs

−
∫ t

0

µα(

∫ s

−s̃
S(i−1)
u ps(du))ds−

∫ t

0

σβ(

∫ s

−s̃
S(i−1)
u ps(du))dWs|2]

≤ C E[|
∫ t

0

∫ s

−s̃
(S(i)
u − S(i−1)

u ) ps(du)ds
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+

∫ s

0

∫ s

−s̃
(S(i)
u − S(i−1)

u ) ps(du)dWs|2]

≤ 2C E[|
∫ t

0

∫ s

−s̃
(S(i)
u − S(i−1)

u ) ps(du)ds|2

+ |
∫ t

0

∫ s

−s̃
(S(i)
u − S(i−1)

u ) ps(du)dWs|2]

≤ 2(t+ 1)C

∫ t

0

E[

∫ s

−s̃
|S(i)
u − S(i−1)

u |2ps(du)]ds,

where C is a positive constant which is independent of i. Since pt(du) is a

smooth probability measure and S
(i)
u = S

(i−1)
u for u ∈ [−s̃, 0], the first term of

(2.7) satisfies the following inequality,

E[|S(i+1)
t − S(i)

t |2](2.8)

≤ 2(t+ 1)C

∫ t

0

E[

∫ s

−s̃
|S(i)
u − S(i−1)

u |2ps(du)]ds

≤ 2(t+ 1)C
(∫ t

0

E[

∫ 0

−s̃
|S(i)
u − S(i−1)

u |2ps(du)]ds

+

∫ t

0

E[

∫ s

0

|S(i)
u − S(i−1)

u |2ps(du)]ds
)

≤ 2(t+ 1)2C

∫ t

0

∫ t

s

E[|S(i)
u − S(i−1)

u |2]f(s, u)ds du

≤ 2(t+ 1)3C

∫ t

0

E[|S(i)
u − S(i−1)

u |2]du.

Let us define vi(u) = E[|S(i)
u − S

(i−1)
u |2] for i = 1, 2, . . .. From the Fubini

theorem and (2.8), we get

vi+1(t) ≤ 2(1 + t)3C

∫ t

0

vi(s)ds

≤ 2(1 + T )3C

∫ t

0

vi(s)ds.

(2.9)

Similarly, we obtain v1(t) ≤ tD for a positive constant D which depends on C,
T , and E[|S0|2]. Therefore, by an induction argument, we obtain

(2.10) vi(t) ≤
M it3i

i!
,

where M is a positive constant which is independent of i. Let us define the
norm ‖ · ‖L2(P), where λ is the Lebesque measure on [0, T ]. It follows from
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(2.10) that

‖S(m)
t − S(n)

t ‖L2(λ×P) = ‖
m−1∑
i=n

(S
(i+1)
t − S(i)

t )‖L2(λ×P)(2.11)

≤
m−1∑
i=n

‖(S(i+1)
t − S(i)

t )‖L2(λ×P)

≤
m−1∑
i=n

(

∫ T

0

M it3i

i!
dt)1/2

≤
m−1∑
i=n

(
M iT 3i

i!
)1/2,

where m and n are integers which satisfy n < m. Therefore, {S(n)
t }∞n=0 is

a Cauchy sequence in L2(λ × P). Consequently, St := limn→∞ S
(n)
t exists

in L2(λ × P) and it satisfies (2.2) for 0 < t ≤ s̃. Moreover, by the Lipschitz
condition we imposed on α(·) and β(·), the uniqueness of the solution is derived
by the standard argument (for instance, we refer to Theorem 5.2.1 in [14]) and
the Gronwall’s inequality. �

Let Mt denote the martingale part of St,

Mt =

∫ t

0

σβ(

∫ t

−s̃
Su pt(du))dWs.

We can easily check that

‖[M,M ]
1/2
T ‖

2
L2(P) <∞.(2.12)

Therefore, St becomes a H2-semimartingale with the canonical decomposition
St = Mt +Rt and Mt is a square-integrable martingale under P.

3. The equivalent martingale measure

The original model (2.1) is incomplete, because the delay τ̃t is an additional
random source. On the other hand, since we replaced the effect of τ̃t with a
density function pt(dx) in (2.2), it is no longer incomplete. In this section, we
find the equivalent martingale measure and study dynamics under it.

Let

(3.1) Xt =

∫ t

0

µα(
∫ s
−s̃ Su ps(du))

σβ(
∫ s
−s̃ Su ps(du))

dWs,

and assume that E[e2Xt ] <∞ for every t ≤ T . The next theorem provides us
the equivalent martingale measure Q the dynamic of St under it, and the new
Brownian motion.
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Theorem 3.1. Let

(3.2) Zt = 1−
∫ t

0

ZsdXs.

Then, Zt is a P-martingale and the probability measure Q defined by dQ =
ZT dP is the equivalent martingale measure of S.

Moreover, under the equivalent martingale measure Q,

W̃t := Wt +

∫ t

0

µα(
∫ s
−s̃ Su ps(du))

σβ(
∫ s
−s̃ Su ps(du))

ds(3.3)

is a Brownian motion. Thus S satisfies the SDE

dSt = σβ(

∫ t

−s̃
Su pt(du))dW̃t(3.4)

under measure Q.

Proof. By the Girsanov-Meyer theorem, Q is the equivalent martingale measure
and

(3.5) Wt −
∫ t

0

1

Zs
d〈Z,W 〉s

is a Q-local martingale. Thus, we get

(3.6)

∫ t

0

1

Zs
d〈Z,W 〉s = −

∫ t

0

µα(
∫ s
−s̃ Su ps(du))

σβ(
∫ s
−s̃ Su ps(du))

ds.

Moreover,

[W̃ , W̃ ]t = [W,W ]t

and W̃t is continuous. Therefore, by the Lévy theorem, W̃t is a Brownian

motion under Q. The new dynamic (3.4) follows directly by inserting W̃t to
(2.2). �

4. Markov property and the infinitesimal generator

Our model (2.1) has a delay effect in the underlying dynamic. This causes
mathematical difficulties in pricing and hedging. The major reason is the non-
Markov property of model. In other word, model (2.1) itself is not Markov.
Consequently, it is hard to find a pricing PDE of financial derivatives under
model (2.1). However, we can construct a vector process including St which is
Markov under Assumption 2.1. For the simplicity, we consider the case, m̃ = 2.
General cases, m̃ ≥ 3, can be derived by adding vector processes and derivative
terms. This is an often used technique in the Asian option pricing. Using this
vector process instead, we can derive the pricing equation

Let us consider the vector process (St, At, Xt) where At =
∫ t
−s̃ Su f(t, u)du

and Xt :=
∫ t
−s̃ Su

∂f
∂t (t, u)du. We next show that (St, At, Xt) is indeed Markov.

We start this with a Lemma.
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Lemma 4.1. For all t > −s̃, the next equation holds.

(4.1) At = A0 +

∫ t

0

Saf(a, a)da+

∫ t

0

∫ a

−s̃
Su
∂f

∂a
(a, u)duda a.s. .

Proof. For each fixed ω ∈ Ω, we obtain an SDE,

lim
∆t→0

At+∆t −At
∆t

= lim
∆t→0

(
1

∆t

∫ t+∆t

t

Suf(t, u)du(4.2)

+

∫ t

−s̃
Su

(f(t+ ∆t, u)− f(t, u))

∆t
du)

= Stf(t, t) +

∫ t

−s̃
Su
∂f

∂t
(t, u)du.

Therefore, we have

(4.3) At = A0 +

∫ t

0

Saf(a, a)da+

∫ t

0

∫ a

−s̃
Su
∂f

∂a
(a, u)duda a.s. .

�

Recall that a vector process, under the risk-neutral measure, (St, At, Xt)
follows the dynamic

dSt = σβ(At)dW̃t,

dAt = Stf(t, t)dt+Xtdt,

Xt =

∫ t

−s̃
Su
∂f

∂t
(t, u)du.

(4.4)

Since the density function f satisfies PDE which is introduced by (2.4), ∂f
∂t =

−Lτtf , we have

dXt = St

(
γt
∂f

∂u
(t, t)− 1

2
D2(t)

∂2f

∂u2
(t, t)

)
dt+

(∫ t

−s̃
Su
∂2f

∂t2
(t, u)du

)
dt

= St

(
γt
∂f

∂u
(t, t)− 1

2
D2(t)

∂2f

∂u2
(t, t)

)
dt−

(∫ t

−s̃
Su
∂(Lτtf)

∂t
(t, u)du

)
dt

= St

(
γt
∂f

∂u
(t, t)− 1

2
D2(t)

∂2f

∂u2
(t, t)

)
dt−

(∫ t

−s̃
Su(Lτt

∂f

∂t
(t, u))du

)
dt(4.5)

= St

(
γt
∂f

∂u
(t, t)− 1

2
D2(t)

∂2f

∂u2
(t, t)

)
dt+

(∫ t

−s̃
Su(LτtLτtf(t, u))du

)
dt

= St

(
γt
∂f

∂u
(t, t)− 1

2
D2(t)

∂2f

∂u2
(t, t)

)
dt+

(∫ t

−s̃
Su(L2

τtf(t, u))du
)
dt,

where L2
τtf := Lτt(Lτtf). Under the condition ∂2f

∂t2 = 0, the second term of
the above equation becomes zero. In this case, our problem becomes a time-
inhomogeneous SDE problem for (St, At, Xt). Also all parameters and func-
tions do not require historical values but need only present values at time t.
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In fact, the assumption ∂2f
∂t2 = 0 is not strong at all, since the delay effect does

not need to depend on time t in a very complicated way.
Under this assumption, the next theorem gives the Markov property.

Theorem 4.1. Under the Assumption 2.1 with m̃ = 2, the vector process
(St, At, Xt) is Markov.

Proof. By Lemma 4.1, At is generated by Wu for 0 < u < t. Therefore
(St, At, Xt) is adapted to the filtration Ft. Moreover the pair (St, At, Xt) is
the unique solution of SDEs (4.4) and (4.5) by Theorem 2.1. Now, we have

|Xt1 −Xt0 | = |
∫ t1

t0

Su
∂f

∂t
(t, u)du|

≤
∫ t1

t0

|Su
∂f

∂t
(t, u)|du

≤ C
∫ t1

t0

|Su|du

≤ CS?u|t1 − t0|,

(4.6)

where
S?u = max

[t0,t1]
Su.

By the Doob’s maximal inequality, Xt is Lipschitz function in L2(Q). Then,
(St, At, Xt) is Markov by Theorem 32 in Chapter 5 of [15]. �

For a general case m̃, we take a vector process Xt = (X
(1)
t , X

(2)
t , . . . , X

(m̃−1)
t )

where X
(i)
t :=

∫ t
−s̃ Su

∂if
∂ti (t, u)du = (−1)i

∫ t
−s̃ Su(L(i)

τt f(t, u))du for 1 ≤ i ≤
(m̃ − 1). Then (St, At, X

(1)
t , X

(2)
t , . . . , X

(m̃−1)
t ) is also Markov and dX

(i)
t is

represented by L(i)
τt f(t, u) and X

(i+1)
t .

5. Option pricing and hedging

In the previous section, we studied the Markov property of the model. We
next find the infinitesimal generator of it.

Recall that St satisfies the following SDDE on Q:

dSt = σβ(

∫ t

−s̃
Su pt(du))dW̃t, 0 < t ≤ T <∞,

St = φ(t), −s̃ ≤ t ≤ 0,

(5.1)

where W̃t is a standard Brownian motion on Q and φ is a real valued continuous
function on [−s̃, t]. Without loss of generality, we set s̃ = 1 and τ0 = 0.

Now, we consider the case (St, At, Xt) = (s, a, x) with path function Su =
φ(u) for −1 ≤ u < t, i.e., we already have observed historical data of Ss for
s < t. Let Pe be the European option price EQ[e−rTh(ST )|Ft], where h(·) is the
payoff function. By the Markov property of the vector process (St, At, Xt), we
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have EQ[e−rTh(ST )|Ft] = EQ[e−rTh(ST )|(St, At, Xt)]. The next theorem gives
us the infinitesimal generator L(St,At,Xt) of (St, At, Xt). Precisely, L(St,At,Xt)

depends on t, however we abbreviate the notation L(St,At,Xt) to L for conve-
nience.

Theorem 5.1. Recall that the infinitesimal generator Lτt of τt is −γτt ∂∂τ +
1
2D(τt)

2 ∂2

∂τ2 . We assume P̃e(s, a, x) ∈ C2
0 (R3). Under the Assumption 2.1 with

m̃ = 2, we can derive the infinitesimal generator L for (St, At, Xt) = (s, a, x),

LP̃e =
1

2
σ2β2(a)

∂2P̃e
∂s2

+ sf(t, t)
∂P̃e
∂a

+ x
∂P̃e
∂a

+
(
sγt

∂f

∂u
(t, t)− s1

2
D2(t)

∂2f

∂u2
(t, t)

)∂P̃e
∂x

.

(5.2)

Proof. The semigroup PT with respect to the vector precess (St, At, Xt) satis-
fies
(5.3)

PT P̃e(s, a, x)=EQ[P̃e(ST , AT , XT ) |St=s,At=a,Xt=x, (φ(ρ), −1 ≤ ρ < t)].

Recall that the generator L satisfies

(5.4) LP̃e(s, a, x) = lim
T→t

PT P̃e(s, a, x)− P̃e(s, a, x)

T − t
.

Since (4.5) and dAtdSt = dAtdXt = dXtdSt = 0, it follows that

EQ[dP̃e(St, At, Xt)](5.5)

= EQ[
∂P̃e
∂s

dSt +
1

2

∂2P̃e
∂s2

(dSt)
2 +

∂P̃e
∂a

dAt +
∂P̃e
∂x

dXt]

= EQ[
1

2
σ2β2(

∫ t

−1

Su f(t, u)du)
∂2P̃e
∂s2

dt+ Stf(t, t)
∂P̃e
∂a

dt

+

∫ t

−1

Su
∂f

∂t
(t, u)du

∂P̃e
∂a

dt+ St

(
γt
∂f

∂u
(t, t)− 1

2
D2(t)

∂2f

∂u2
(t, t)

)∂P̃e
∂x

dt

+

∫ t

−1

φ(u)(L2
τtf(t, u))du

∂P̃e
∂x

dt].

Therefore, we have

(5.6)

LP̃e(s, a, x) = lim
T→t

PT P̃e − P̃e
T − t

=
1

2
σ2β2(a)

∂2P̃e
∂s2

+ sf(t, t)
∂P̃e
∂a

+ x
∂P̃e
∂a

+
(
sγt

∂f

∂u
(t, t)− s1

2
D2(t)

∂2f

∂u2
(t, t)

)∂P̃e
∂x

.
�
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By Theorem 5.1 and the martingale representation theorem in [5], [6] and
[7], we derive the partial differential equation (PDE) for the European option
pricing at t in the following.

Theorem 5.2. Let us denote the European option price Pe(t, s, a, x;φ(ρ), −1 ≤
ρ < t) ∈ C2

0 (R+ ×R3). Then Pe(t, s, a, x) satisfies that

∂Pe
∂t

+ LPe = 0,

Pe(T, s, a, x) = h(s),
(5.7)

where f(t, u) is a solution of the followings,

∂f

∂t
(t, u) + Lτtf(t, u) = 0,

f(0, u) = δτ0(u).
(5.8)

Proof. By Theorem 5.1 and the martingale representation theorem, the Eu-
ropean option price is decomposed into three terms, dt, dBt and dWt. Since
the European option price is a martingale, dt term should be zero. Therefore,
it follows that Pe(t, s, a, x) with zero spot rate of interest satisfies the above
PDE. Refer to [14]. Moreover, probability density function pt(u) satisfies the
Kolmogorov backward equation of the process τt. �

Let us consider a European style contingent claim H := h(ST ) ∈ L2(Q) and
define Vt = EQ[H|Ft]. The price of H is given by Vt = Pe(t, St, At, Xt) where
Pe is the solution in Theorem 5.2. By the self-financing condition of a hedging
strategy ξHs , we have

(5.9) Vt = V0 +

∫ t

0

ξHs dSs,

and

(5.10) ξH =
d〈V, S〉
d〈S, S〉

.

Now, we assume that Pe ∈ C1,2,2,2([0, T ] × R3). The next theorem shows
that our hedging strategy is in fact a delta hedging.

Theorem 5.3. ξH is represented by

(5.11) ξHt =
∂Pe
∂St

.

Proof. By (5.10), we need to calculate d〈Pe, S〉t. By the functional martingale
representation theorem, Pe(t, St, At, Xt) satisfies that

(5.12)

Pe(t, St, At, Xt)− Pe(0, S0, A0, X0)

=

∫ t

0

LPe(0, S0, A0, X0)du+

∫ t

0

σ
∂Pe
∂s

β(A0)dW̃s.
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This leads to

(5.13) d〈Pe, S〉t = σ2 ∂Pe
∂s

β2(A0)dt.

By (5.10) and (5.1), we finally get

(5.14) ξHt =
∂Pe
∂St

.
�

6. Conclusion

We have studied option pricing and hedging in the presence of the short
term model dependency through a stochastic delay effect. The short term
dependency is captured either through the stopping time or the backward time
integration. We studied the case when the dependency is captured by the
backward time integration. Our model is not a risk neutral one for generality.
Therefore, we found the equivalent martingale measure, and the corresponding
pricing and hedging formulae.
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[7] , Functional Itô calculus and stochastic integral representation of martingales,
Ann. Probab. 41 (2013), no. 1, 109–133. https://doi.org/10.1214/11-AOP721

[8] R. J. Elliott, T. K. Siu, and A. Badescu, On pricing and hedging options in regime-

switching models with feedback effect, J. Econom. Dynam. Control 35 (2011), no. 5,
694–713. https://doi.org/10.1016/j.jedc.2010.12.014

[9] R. Frey and A. Stremme, Market volatility and feedback effects from dynamic hedging,

Math. Finance 7 (1997), no. 4, 351–374. https://doi.org/10.1111/1467-9965.00036
[10] P. Jung, T. Owada, and G. Samorodnitsky, Functional central limit theorem for a class

of negatively dependent heavy-tailed stationary infinitely divisible processes generated
by conservative flows, Ann. Probab. 45 (2017), no. 4, 2087–2130. https://doi.org/10.
1214/16-AOP1107
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