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DIAGONAL SUMS IN NEGATIVE TRINOMIAL TABLE

FEunmi CHol AND YUuNA OH

ABSTRACT. We study the negative trinomial table 7" of (22 + x +
1)~™ and its t/u-slope diagonals for any ¢,u > 0. We investigate
recurrence formula of the ¢/u-slope diagonal sums of 77 and find
interrelationships with ¢ /u-slope diagonal sums of the trinomial table
T.

1. introduction

The Pascal table P and the negative Pascal table P’ are well known
arithmetic tables of (x 4+ 1)*" respectively for n > 0. Each diagonal
sum over P makes a Fibonacci number F),, and it is not hard to see
that certain diagonal sums over P’ makes F_,, by comparing the tables
P and P’ ([1], [6], [7]). In fact, each diagonals and rows in P can be
found as a type of diagonals in P’. As a generalization, there have been
researches about the trinomial table 7" and the negative trinomial table
T of (22 + z + 1) respectively ([3], [4]).

T T
0] 1 f1—1 0 1 —1 0
1111 201-21 2 —4 2
2012321 and 3/1-33 2 -9 9
3136 7 6 3 41-4 6 0-1524
41410161916 5/1-510 —5—2049
5/ 1515304551 6] 1—615—14—2184

Received January 31, 2019. Revised July 27, 2019. Accepted September 10, 2019.

2010 Mathematics Subject Classification: 05A10, 11R11.

Key words and phrases: trinomial table, tribonacci sequence, diagonal sum.

© The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.


https://doi.org/10.11568/kjm.2019.27.3.723

724 Eunmi Choi and Yuna Oh

Each diagonal sum over T makes a tribonacci number ([2], [5]). How-
ever unlike P and P’, interrelationships between components of 7" and
T’ may not be seen easily by only looking at the tables. For example,
the marked diagonal {1,4,6,2} in 7" may not be appeared in any type
of diagonals in T".

In this work we investigate sequences of certain diagonal sums in 77,
and find their interrelationships. We consider various diagonals of any
slope t/u that moves u steps in z-axis and ¢ steps in y-axis over both T’
and 7”. And we study sequential properties of ¢/u-slope diagonal sums.
Throughout the work, let P = [u, ;] and P’ = [u] ] be (negative) Pascal
tables, while T' = [e; ;] and T" = [e] ;| be the (negative) trinomial tables
for i,7 > 0.

2. Certain slope diagonal sums of Negative trinomial table

For integers t,u > 0, a t/u-slope diagonal (abbr. diag.) over an
arithmetic table means a diagonal that moves u steps toward z-axis
and t steps toward y-axis. In particular if u = 1 then we simply say
it a t-slope diagonal. So the 1-slope diag. is the ordinary diagonal.

S}Lt/u)T

Over the negative trinomial table 7", by we mean the ¢/u-slope

ascending diag. sum starting from e;, ;. We also denote by SYM the

t/u-slope descending diag. sum from ej,. So for instance, Si(t/ ot =

! / / A/l _ / !
€0 T €ig1 T oot 0" and Sj =€t ey 4T eyi ot
Like u; j + u; j+1 = Wiy1 j+1 in P, the recurrence rules over 7" and 7"

_ . . / _ ! o _ /
€ij—1 1 €5+ €iji1 = €11 and € — €y — €y = €

(*)

are well known. We explore some entries in 7" to get diagonal sums.

/

THEOREM 1. T" = [é] .| satisfies the followings.

.3
o= €ip =1 1 if7=0 (mod 3)
(1) { €y = —ei1 = —i (2)e1;=4q—-1 ifj=1 (mod 3)
€= €i12 = % 0 ifj=2 (mod 3)

So €y j+ €41+ 9=0frj>0.

Proof. Clearly e;,,,=1= €10, We notice
/ / /
€30 =1 =e30, €3, = —=3=—€31, €35 =3 = €22,
/ _ —_ / _ _ / — I
and €jy =1=e49, €, = —4=—e€41, €, =0=¢e3,.
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Assume the identities (1) are true for some i. Then the recurrence
rule (x) of 7" with induction hypothesis shows

e;+1,1 = 62,1 - €§+1,0 = 7€i1 — €i+1,0 = —Ci+1,1 = —(i+1),

e§+1,2 = 62,2 - €§+1,0 - €;+1,1 =€i—12 — €420 T €it+1,1

=e€j_12 — €0t (6i0+611) €i-12 7+ €i1 = €i2,
and €}, =€y — €119~ €ii1q = =& 1) —1+(i+ 1) Z(l;rl)

Observe the first few entries {1, 1 0,1,-1,0,1, — } in the 1th
row. In fact, from €}, = 1 and e}, = —1 in (1), we have 1o = €pg —
elg—¢€py =0and e 3 =ey3—€); —e), =1 If we assume the identities
(2) for j < 3k (k € Z) then (1) implies

0—(=1)—(0)=1 ifj=3k
0—1—(=1)=0 ifj=3k+2

Let us begin to consider 1-slope diag. sums Sj(l)i in 7.

Dl _ 1)) 1)) 14
THEOREM 2. SJ(- ) SJ 5, SO S SJ(.J2 - SJQl = SJ( N,

Proof. By Theorem 1 and the recurrence rule (x) of 7", we have

S =eg=1, S =¢l, +ehy=-1+1=0,

Sél)i = e/1,2 + ‘3/2,1 + eg,o = —1 and S?El)i = 3/1,3 + 6/2,2 + 6%,1 + @/4,0 =0,
etc. So the first few values are {S(m |0 < j <7}= {1 0,-1,0,1,0,—1,0},

where these satisfy Sj(-l)i S V¥ and S SJ 3 Sj(l 5 + 55 1”
In general, the 1-slope descendmg dlag sum starting from 61,3 is
f;(l)i

7 ’ / / /
g =€y te it € 0T € T €
and each component can be expressed by the recurrence (x) of 7" that
/ _ !
€15 T€,
/ 0 / /
€2,j-1= €11 ~€2;-3 €252
/ _ ! / /
€j—12 7 G—22 7C-10 TG-11
/ _ /
€1 T 611 o
/ /
€i+1,0 = €50
Hence by taklng columnwise sum from the above table, we have

1
S =+ (Eh gt e )

S
-
—(6/ +“‘+6/ )_(6/ +..._|_6, +e/ )
2,j—3 J—1,0 2,j—2 J-11 7,0
Sun , s

—€1,5-2 j—1 " €1,5—-1
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= (e); + €1+ eh o)+ S — sty — sty

i
But since € ; + €} ;_; + €}, 5 = 0 by Theorem 1, we have

1)) 1)) 1)) 1)} 1) 1)) 1)) 1)l 1)
St = g — gy — g = gt} 50 SIVy — 51y 4 S0 = s O

THEOREM 3. S](1/2)¢ _ _Sj(l_/12)¢7 SO Sj(l_/32)¢+5](1_/22)¢_Sj(l_/f)i _ S§1/2)¢_
Proof. Each 1/2-slope descending diagonal starting from ¢} ; ends at
either Oth or 1th column according to even or odd j. So if j = 2k +r
(r=0,1) then
1/2
SJ(' I = €1t ey ot F gt iy,

The first few 1/2-slope descending diag. sums {Sj(-l/z)i |0 <j<5}of
T" are {1,—1,1,—1,1,—1}, and it satisfies S](-I/Q)$ = —Sj(l_/f” for j <5.

Assume S](-I/Z)i = —SJ(»I_/f)i is true for all j < 2k (k € Z). If j = 2k
then

S]('lﬂu =€t ottt e

From the recurrence rule (%) in 7", since
617]' - 6/17‘7

/ !/ /

€2j-2 = €152 €254 €2;-3

— / !/ /
€ko2 = €12 "Co0 TCk1
/ _ /
Ck+1,0 = Ck0
the columnwise sum of the above table gives rise to

SP = el (el st gt ) = (g o )

J
N N J/

TV TV
1/2)) 1/2
s2 St
/ 1oy o(1/2)) (1/2)4 (1/2)4 _ (1/2)4
- (ez,j—s +-- ekz,lz = ij2 - ijz - qu = —qu )
1/2
Sg('f/l)‘t_ell,jfl

because €/ ; + € ; | + €} ; o =0 by Theorem 1.

On the other hand, when j = 2k + 1, due to the following table
¢y = €
e/Q,j—Q = 6/1,3'—2 _6/2,j—4 _6/2,j—3

/ o / /
€k3 = €13 €1 “Cro
/ 0 Y
Ck+1,1 = €k €k+1,0
we have

Sk e+ (6/1,3'—2 +oet 62—1,3 + 62;,1) - (6/2,j—4 oot 6;‘?71)

5J
J/

1/2)4 1/2)4
SJ(__/Q) S](__/2) _6117‘7__2



Diagonal sums in negative trinomial table 727

12\1, 12 12J, 1/2

(1/12>¢ ,1
J 2=
This implies S](l_/32 + S 2 5(1/2 _ S](-I/ZN, -

1

TueorEM 4. §UD¢ — gUHL_ gWsk _ O/l

Proof. Note that 1/3-slope descending diag. starting from ¢/ ; ends
at 0, 1 or 2th column according to j (mod 3). So when j = 3k + r
(r=01 )

Sj(l/g) jten gt e st e,

weeasﬂysee{sl/“mq<10} {1,-1,0,2,-3,1,4,-8,5,7, —20}

and notice a recurrence S; 1/3” 5(1/3 S(l/3 S](l/?’)l for 0 < 5 < 10.
is true for j < 3k

=
We now assume Sji/gg)i S](-lf/; S§£/13) = S(l/ "

(k € Z). If j = 3k then by making a table

!
€14
/

_ / /
€9j-3~ €153 "€, 5 €3, 4

/ _ ! / !
€k3 = €13 €1 “Cro
/ 1
€k+1,0 = Cko
we have
a3y _ / / / ' ’
Sj =e;* (el,ij +ert ezt ek,o) - (62,3‘75 +eeet ek,l)J
1/3)1 1/3))
S](,/g) S;,/g) el s
' 1oy o(1/3) (1/3)4 (1/3)4
- (62,3‘74 +et ek,z) = Sj—S - Sj—2 - Sj—l .

P
(1/3)4
S; e

Analogously if j = 3k 4+ 1 the with the similar table above we have

1/3))

1/3)4 1/3)1
i S et 5
! / / _ q(1/3) (1/3)4 (1/3)
- \(62,]’—4 tot ezt 61c+1,02 =S5 =S8 T =8
1/3 ¢
J< /1> _61] 1

Finally when j = 3k + 2 we also have

(1/3)4 / / / / / / /
S; =€ J+(€1,j—3 +oo e st eha) — (€, 5+ ezt o)

1/3)1 3))
8513 851 et 5
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1/3 1/3) 1 3

-~
(1/3)4
Sjlr e

THEOREM 5. Sﬁ/f Sj(l/;) — Sﬁ/fm = Sj(l“” for all j > 4.

Proof. The S%/"* = {1,-1,0,1,0,-2,2,1,-3,0,5, —4, —4} satisty
S — gDt g = W for 0 < j < 120 Any 1/4-slope
descending diag. starting from ey; ends at j (mod 4)th column. In
fact, when j =4k +r (r =0,1,2,3) we have

(/44 _ / / /
S; T =ej eyt gt e,
and each component satisfies
/ _ /
€ = €
/ _ _ o Y
€2,j-4= €1,5-4 €2,j-6 €2,j-5
e — ¢ —e —e
kor+4 — “Yk—17r4+4 k,r42 k,r+3
/ _ / / /
Cki1r = Ckar TCka1r—2 T Ckt1r-1

Hence if j = 4k then

1/4)}
SJ(' M =€yt (e at st ero) — (€, 6+"'+6;f,2)/

s/t S(1/4>¢_61J ,
/ 1y — /9l (/9! (1/4)4
- \(er 5 + te _'_ ek,.?)) — Sj 4 Sj—2 - Sj—l .
1/4
s/ >¢7€1J .

If 7 =4k + 1 then we also have
1/4
SJ(' M = eyt (€jutFeas) te— (e 6+ + 62,32

G174 GO/
— j—2 1,7—2
1/4)) 1/4)) 1/4))
- \(el2,jf5 +oet 62:,4 + e;€+1,0)l = 55—/4) - Sg('—/2) - Sg('—/1) .
5(1/4)L61 )
2J—
Analogously, the recurrence S (/94 S(l/ i S](-l_/; N Sj(-l_/fl * holds
forany]—4k:+7“vv1thany0§r§3 O]

The 1/t-slope descending diag. sum S(l/ R (t = 5,6) are observed
that
(S = {1,-1,0,1,-1,1,-1,0,2, -3,2,0, -2, 4}
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{Sjg/aw} ={1,-1,0,1,-1,0,2,-3,1,3,-5,2,5, 10}

and notice recurrences Sj(»l_/;)i - SJ('I_/;N - Sj(l/fn S 5(1/6
Sj(l/ 6)) S(l/ o) Sj(-l/ 9% for some j. A generalization is as follows.

THEOREM 6. S|/ — SitDv — gi/pv = it/

-2 -1 for all j >t > 3.

Proof. The first few S; (/04

1/t 1/t 1/t

S(élj tzell,o Stilj ;j_e/lt 1 Silj ii €12t €y o
¢ ¢ ¢

Sy =€l |5 =ej tepg |Suli =€l ten

1/ ’ 1/t)1 1/t)1
Sé/) =€l St(+/1) =€l e S(/) =€l + €y ey

Since € ,,, + €}, + €}, ; =0 in Theorem 1, we have

S+ SV 1 S = (e el ) F (€hy +ehy) Feh

=€y +ehy =€, = 5.
And € o + €] 9 1 + €] 9 5 =0 in Theorem 1 imply
1/t 1/t 1/t
Su 4 Sy + Syl
= (€lg Ty +e30) + (€la 1 +ehyq)+ (€lo ot ehy o)
= (6/1,27& + 6/1,21‘,71 + 6,1,2t72) + (elz,t + 6/2,t71) + 6/2,t72) + eg,o
= (b €hyo) + ehya) + g = €y ey = S
Now we assume SJ(-lf/tt)i - S](-lf/;)L - Sﬁ/lt S(l/t for j < kt (k € Z).
Let t = kt +1r (0 <r < t). Then by making use of the table

/ _ /

€15 = €1

/ ) Y Y
€oi—t — €15t €oj—t—2 €241

/ _ / / !
Chttr = Ck—1t4r Chttr—2 " Chtir—1

€Z+1,r = 623,7" _€;c+1,r—2 _e;c+1,r—1
we have
S](‘l/t)i =€ ettt e,
= ell,j—i_\(e/l,j—t e e T eﬁc,r)j_\(e,lj—t—2 o Cra)
S]?lj/:)l 5517/2;)3: /
— <6/27j—t—1 44 6;6-1—1,7’—1) — Sj(i/tt)i _ Sj(i/;)i _ Sj(i/f 3 0

-~
(1/t)d
S5 e
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3. Reflected sequence of diagonal sums

Table 1 is about sequences of 1/t-slope descending diag. sums S (

of T" satistying S{"/* — SiDv — GiUPDY = it/
Table 1. S/ (3<t<8)
t\nl0 123 4 5 6 7 8 9 1011 12 13
311-102-3 1 4-8 5 7-2018 9-47
411-101 0-2 2 1-3 0 bH5—-4—-4 8
5/1-101-1 1-1 0 2-3 2 0-2 4
6 1-101-1 0 2-3 1 3 =5 2 5-10
71-101-1 0 1 0-2 2 1-4 3 2

Refer A077889, A247920 OEIS to {S!'

the numbers in {Sn

~

t

¢} in reverse order then {- - - |

for all j >t > 3.

57 _87 47 17

/D4

)i} with ¢t = 4,5. If we display
_37 27 07

~1,1}

corresponds to the negative indexed part of the extended tribonacci se-

quence {--- |

5a_87 471a

_37

2,0,

—1,1,0,0,1,1,2,4,7, -

}. The re-

arranged sequence of {5’7(11/ 9 i} (t > 3) in reverse order will be called the
reflected sequence and denoted by {SS/* | n € Z}.

Table 2. S/ (3 <t <6)

t\n\—5—4—3—2—101234567 8§ 91011 12 13 14 15 16 17 18
3 1-3 2 0-11001124713244481149274504927170531365768
4-2 0 1 0-110001011 2 2 4 5 8 11 17 24 36 52 77
5 1-1 1 0-1100001001 111 2 3 3 4 6 8 10
6 0-1 1 0-1100000100011 1 0 1 2 3 2 2

So the reflected sequence {S (1788 | n € Z} is the extended tribonacci

sequence satisfying .S,

THEOREM 7. Fort > 3, a recurrence rule is SnH
SE/DE , and the limit of 2

G/ g

-2 —x—1=0.

( /DL
(1/t)¢

(1/3)¢

+ S,

in {SS/0% |

(1/3)¢

57(11/3)$ for n € Z.

1/t)l
57(L+/2 +Sn+1

n € Z} is a real root of

/0l

Proof. From the recurrence S; 1/t = 5; 1/t)i + 55 1/t)i + Sj(l/m, if we

consider j = —n (n > 0) then S

we have

1 t
S/t

By dividing the both sides of the recurrence by 57(1 Y 1”

1/t

(n+t) —

(1/'5
S —(n+2)

(1/t
+ S (n+1)

S(I/t + S l/t + SO for any n € Z.

A1/t
we have

PR

, SO
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1

game 1
gt = gumr +gumr T ogum
55},““ sO7L G
(1/t>¢
(1/t)l then r = t — + rt — + rt —, and r is a real root
O

So if let r = lim £
N—00 n,

of the polynomial 2 — 2> — 2 —1=10

(/D4 with trinomial table T is as fol-

An interesting connection of Sy

lows.
THEOREM 8. Let i, (k > 0) be the kth row of T. Then inner product
a/md S(l/t S(l/t )o

01"7";.C and 2k+1 consecutive terms {S( /t i} yields (St/0 S
S(l/t
n+(t—2)k-
; G Gy g — G/ g

Proof. Let t = 3. Clearly ( 7(11_/2”, !
r=(1,1,1).
Since 7, = (1,2,3,2,1) = (1,1,1,0,0) + (0,1,1,1,0) + (0,0,1,1,1) b
(%), if we write it by 72 = (r1,0,0) + (0,71,0) + (0,0, ;) then
(S (1/3)4 5(1/3 5(1/3 57(11/?) 7347(11/3)¢) or
(Sr(zl/i) 75«(1/3)¢ S 1/3)¢>
(U gL g 1/3)¢)

1/3)4 (1/3) (1/3)) 1/3)}
- ¢+-S D sﬁj;

by Theorem 7. Assume the identity in the theorem is true with respect
to ri_1. Since r; equals (rk 1,0,0) + (0,7%-1,0) 4+ (0,0, 7,_1), we have

(1/3) 1/3)4 (1/3)L a(1/3)L
(Sn/2k¢78(/2k IR S / iS & ) Tk
= (S0 SN Yore+ (S Sy oy
(57(11/23“27 T ’ST(L1/3) ) O Tk—1
(1/3 &(1/3)4 (1/3) &(1/3)4 &(1/3)4
=5 Sn 1+(k—1) +Sn+k 1) _Sn—i-(k 1)+ Sn+(t 2)k?

n—2+(k—1)
by the induction hypothes1s and Theorem 7.
When t = 4, we also can see from Theorem 7 that

(5'1(11/;1) 7ST(Ll_/Ar) 5(1/4) )or
gt gt gl gosen _ gosme
andglls/(i 5(1/4 5(1/4 S(l/il)i 3(1/4)¢) T
5(1/4 Sr(bl—/;lN) or + (8(1/4) Afll_/g)i’ gél_/il)i) o1

(5(1/4
n—4 N
+ (Sr(ll/;l) ,Sél/;l)i, 3(1/4)¢)
(1/4 1/4 G/ a(1/a)
+ 8/ 4 gy _%M — S

_ G/
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Now assume (SS/; r_1) Sél/f)iysél/t)i)

any t > 3 and k > 1. Then
A1 1 1/t al
(S, S, SV S o
= (Spdas - S o + <S“/§k+1w-- LS oy

n n

N C TR

n

_ S(l/t)i

n+(t—2)(k—1) for

OTL_1

a(1/t)) (1/6)l (1/6)4
= S oy t—2)(h-1) + 85, 14 (t—2)(k—1) +Sn+t 2)(k—1)
S(l/t _ S(l/t)i
T Pn—24(t=2)(k—1)+t  Pnt(t—2)k’
by Theorem 7. This finishes the proof. m

Since {5/ | n € Z} corresponds to the extended tribonacci se-

(L/80 (n > 1) can be graphically explained by

1/1-slope ascending diag. sums of T', while SEHY (n < 0) are 1/3-slope
descending diag. sums of 7”. Then it is natural to ask graphical descrip-

quence, the numbers Sy

tion of S{/"* (n > 1) over T for any ¢ > 3. For this purpose, similar

to S,(f/ T and S,(f/ N over T , we shall use notations O'i(t/ T and O'(t/ uld

over T. The former means the t/u-slope ascending diag. sum startlng
from e; ¢ while the latter is the descending diag. sum starting from e ;

over T'. For instance af” = agt/m = ejo+ €i_t1+ €_ouo+--- and

O'(I/t)i = €y, -+ €1,j—t —+ €2,j—2t 4.,
THEOREM 9. S (1/3) S) ﬁb_)g And $ 1/4) (1/2“

Proof. The 1-slope descending diag. sums over T clearly satisfy {afﬂé |
n>3}={1,1,2,4,7,13,--- } = {0(1)T | n > 3}, which is the tribonacci
numbers. So by {91(11/3”} ={1,1,2,4,7,--- } in Table 2, the proof of the
first identity is clear.

The first few numbers of 1/2-slope descending diag. sums over T" are

{oWDV | >4} ={1,0,1,1,2,2,4,5,8,11,17,--- },
where this equals {S/*} = {1,0,1,1,2,2,4,5,8, 11,17, --- } (see Table
(1/4)
14

2). In fact, O'%/QN =ep10 + €18t 26+ €34+ €42+ €5 0= g . Since
0 17

the first few numbers in sequences {S(/ i} and {O' 12 )i} correspond

each other, it is enough to show that {a ¢} satisfies the recurrence

](1/2) + 0(1/2) + 0(1/2) (I/QN , that is the same pattern of SS (/DL
Theorem 7 In fact
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(1/2)¢ + 0(1/2)¢ + J(1/2)

(60,] + €1,5—-2 + €254 + - ) +<€0,j+1 + €1,5-1 + €253 + - )
+ (o2 +e1j+eaj o+ ---).
Then by considering each columnwise sum, we have

o Lol ol — et ey tes o ey s+
=epj+at+ (1420t exjtesjotes;s5+---)= 03(1/42) )
because ey j14 = 0 for all j > 0 and the recurrence (x) of T'. [
(M G/
Clearly 011 = €p,11 + + €38 -+ €4,7 + €56 + + €11,0 S .

-~

44454126+ 161+ 112+45+10+1=504

Let cr(( / ))T and 087/;)” be 1/2-slope ascending and descending diag. sums
startlng from the component e,; of 7. The next theorem further ex-
plains SE(Ll/ ¥ in relation to certain 1 /2-slope diag. in T

0(1/2) ifn=0 (mod 2)

THEOREM 10. S{/Y% = /24— 0) .
Ton- = (}L/?%; ifn=1 (mod 2)
( 1)
Proof. Since Ugo/n) D= 7(11/ i , the first equality is due to Theorem 9.

Now we look at a 1/2-slope descending diag. sum in 7T, for example,
O‘é(l)’/é))i = ep12 + €10+ €28 +e3p+ - +eso = Sﬁr/f; . Also it can be

-~ -~

1+19+15+1=36
explained as the increasing diagonal sum ego + €52 + €44 + €36 = 36 =

T
Table 3. a(( /;BT) Table 4. 05@1)
n=4 0((3’02)” 1= él i n=>5 08712)” =0
6 Ug;ﬂz)n - S§1/4A)$1 4 . U%/lz)n 1
i S
10 T (3.0) =14+6+1=29), 11 T(3) =3+2=
12 |oply) =1+10+6=80" 13 o) =447=11
In case of n = 2k > 4, the first few numbers 0((1/;24),T0 are in Table 3,
where it shows {0(@1))} = {1,1,2,4,8,17,36,77,165, - - - } = {S/* |

n :even}.
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Similarly when n = 2k+1 > 4, the first few numbers o = (1/ 5) 1) are in Ta-
ble 4, where it shows that {0, (/21 v ={0,1,2,5,11,24,52,112,241, - - - } =

n n—>5 1)
{5’,(11/4)i | n:odd}. This completes the proof O

In fact Theorem 10 corresponds to the following table.
SO iy, o1/

(a.b)

n 1 5 6 7 8 9 -
1Y P AV e ) Lt V) e 731 e ¢ v e e O
Su' =01y 0=01) 1=0n 1=000) 2=040g 2=0p))
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