DOI QR코드

DOI QR Code

Ru/Al2O3/메탈폼 촉매를 이용한 친환경 액체추진제 분해

Decomposition of Eco-friendly Liquid Propellants over Ruthenium/Al2O3/metal foam Catalysts

  • Yoo, Dalsan (Department of Chemical Engineering, Kongju National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • 투고 : 2019.08.16
  • 심사 : 2019.09.02
  • 발행 : 2019.09.30

초록

Hydroxylammonium nitrate (HAN) 기반 액상 추진제는 발암물질이 아니며 연소가스 또한 독성이 거의 없어서 환경 친화적인 추진제로 주목을 받고 있다. 추력기에서 HAN 기반 액체추진제를 분해하는데 사용되는 촉매는 저온 활성 및 고내열성을 동시에 보유하고 있어야 한다. 본 연구의 목적은 metal foam 표면에 alumina slurry를 wash coating 방법으로 담지한 후, 루테늄(ruthenium) 전구체를 그 위에 담지하여 Ru/alumina/metal foam 촉매를 제조하고, 이 촉매의 HAN 수용액 분해 활성을 평가하는 것이다. Wash coating 방법으로 metal foam 지지체에 알루미나를 담지시키는 과정에서 wash coating 반복 횟수가 alumina/metal foam의 물리적 특성에 미치는 영향을 분석하였다. 알루미나 wash coating 횟수가 증가할수록 약 7 nm의 직경을 갖는 메조기공이 지속적으로 발달하여 표면적과 기공 부피가 증가하는데, metal foam에 알루미나를 코팅하는 과정을 12 회 반복하는 것이 최적이라고 판단하였다. 이 지지체에 Ru을 담지한 Ru/alumina/metal foam 촉매의 표면에도 메조기공이 잘 발달하였다. 활성금속과 알루미나를 담지하지 않은 metal foam 자체만으로도 HAN 수용액의 분해반응을 촉진할 수 있음을 알 수 있었다. Ru/alumina/metal foam-550촉매의 경우는 열분해 반응에 비해서 분해개시온도를 큰 폭으로 낮추었고, ${\Delta}P$를 크게 증가시킬 수 있어서, HAN 수용액 분해 반응에서 우수한 활성을 보였다. 그러나 이 촉매를 $1,200^{\circ}C$에서 소성하면 반응 활성이 저하되는데 이는 촉매의 표면적과 기공 부피가 급격하게 감소하고 Ru이 소결되기 때문이다. 추가적인 연구를 통해서 Ru/alumina/metal foam의 내열성을 개선할 필요성이 있다.

Hydroxylammonium nitrate (HAN)-based liquid propellants are attracting attention as environmentally friendly propellants because they are not carcinogens and the combustion gases have little toxicity. The catalyst used to decompose the HAN-based liquid propellant in a thruster must have both low temperature activity and high heat resistance. The objective of this study is to prepare an Ru/alumina/metal foam catalyst by supporting alumina slurry on the surface of NiCrAl metal foam using a washing coating method and then to support a ruthenium precursor thereon. The decomposition activity of a HAN aqueous solution of the Ru/alumina/metal foam catalyst was evaluated. The effect of the number of repetitive coatings of alumina slurry on the physical properties of the alumina/metal foam was analyzed. As the number of alumina wash coatings increased, mesopores with a diameter of about 7 nm were well-developed, thereby increasing the surface area and pore volume. It was optimal to repeat the wash coating alumina on the metal foam 12 times to maximize the surface area and pore volume of the alumina/metal foam. Mesopores were also well developed on the surface of the Ru/alumina/metal foam catalyst. It was found that the metal form itself without the active metal and alumina can promote the decomposition reaction of the HAN aqueous solution. In the case of the Ru/alumina/metal foam-550 catalyst, the decomposition onset temperature was significantly lowered compared with that of the thermal decomposition reaction, and ${\Delta}P$ could be greatly increased in the decomposition of the HAN aqueous solution. However, when the catalyst was calcined at $1,200^{\circ}C$, the catalytic activity was lowered inevitably because the surface area and pore volume of the catalyst were drastically reduced and Ru was sintered. Further research is needed to improve the heat resistance of Ru/alumina/metal foam catalysts.

키워드

참고문헌

  1. Amrousse, R., Katsumi, T., Azuma, N., and Hori, K., "Hydroxylammonium nitrate (HAN)-based green propellant as alternative energy resource for potential hydrazine substitution: From lab scale to pilot plant scale-up," Combust. Flame, 176, 334-348 (2017). https://doi.org/10.1016/j.combustflame.2016.11.011
  2. Oommen, C., Rajaraman, S., Chandru, R. A., and Rajeev, R., "Catalytic Decomposition of Hydroxylammonium Nitrate Monopropellant," Proc. Int. Conf. Chem. Chem. Process (ICCCP 2011), 10, 205-209 (2011).
  3. Amrousse, R., Katsumi, T., Itouyama, N., Azuma, N., Kagawa, H., Hatai, K., Ikeda, H., and Hori, K., "New HAN-based Mixtures for Reaction Control System and Low Toxic Spacecraft Propulsion Subsystem: Thermal Decomposition and Possible Thruster Applications," Combust. Flame, 162(2), 2686-2692 (2015). https://doi.org/10.1016/j.combustflame.2015.03.026
  4. Tanaka, N., Matsuo, T., Furukawa, K., Nishida, M., Suemori, S., and Yasutake, A., "The "Greening" of Spacecraft Reaction Control Systems," Mitsubishi Heavy Ind. Tech. Rev., 48(4), 44-50 (2011).
  5. Katsumi, T., Kodama, H., Matsuo, T., Ogawa, H., Tsuboi, N., and Hori, K., "Combustion characteristics of HAN-based liquid propellant," Sci. Technol. Energ. Mater, 45(4), 442-453 (2009).
  6. Amrousse, R., Katsumi, T., Bachar, A., Brahmi, R., Bensitel, M., and Hori, K., "Chemical engineering study for hydroxylammonium nitrate monopropellant decomposition over monolith and grain metal-based catalysts," React. Kinet. Mech. Catal, 111(1), 71-88, (2014). https://doi.org/10.1007/s11144-013-0626-6
  7. Amrousse, R., Katsumi, T., Sulaiman, T., Das, B. R., Kumagai, H., Maeda, K., and Hori, K., "Hydroxylammonium nitrate as green propellant: Decomposition and stability," Int. J. Energ. Mater. Chem. Propuls, 11(3), 241-257 (2012). https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2012004978
  8. Courtheoux, L., Amariei, D., Rossignol, S., and Kappenstein, C., "Thermal and Catalytic Decomposition of HNF and HAN Liquid Ionic as Propellants," Appl. Catal. B: Environ., 62(3-4), 217-225 (2006). https://doi.org/10.1016/j.apcatb.2005.07.016
  9. Vyazovkin, S., and Wight, C. A., "Ammonium Dinitramide: Kinetics and Mechanism of Thermal Decomposition," J. Phys. Chem. A, 101(31), 5653-5658 (1997). https://doi.org/10.1021/jp962547z
  10. Gronland, T.-A., Westerberg, B., Bergman, G., Anflo, K., Brandt, J., Lyckfeldt, O., Agrell, J., Ersson, A., Jaras, S., Boutonnet, M., and Wingborg, N., "Reactor for Decomposition of Ammonium Dinitramide-based Liquid Monopropellants and Process for the Decomposition," US7137244B2 (2006).
  11. Giani, L., Groppi, G., and Tronconi, E., "Mass-transfer characterization of metallic foams as supports for structured catalysts," Ind. Eng. Chem. Res., 44(14) 4993-5002 (2005). https://doi.org/10.1021/ie0490886
  12. Bhattacharya, A., Calmidi, V. V., and Mahajan, R. L., "Thermophysical properties of high porosity metal foams," Int. J. Heat Mass Transf., 45(5), 1017-1031 (2002). https://doi.org/10.1016/S0017-9310(01)00220-4
  13. Sirijaruphan, A., Goodwin. Jr, J. G., Rice, R. W., Wei, D., Butcher, K. R., Roberts, G. W., and Spivey, J. J., "Metal foam supported Pt catalysts for the selective oxidation of CO in hydrogen," Appl. Catal. A Gen., 281(1-2), 1-9 (2005). https://doi.org/10.1016/j.apcata.2004.10.019
  14. Roy, P. S., Park, N-K., and Kim, K., "Metal foam-supported Pd-Rh catalyst for steam methane reforming and its application to SOFC fuel processing," Int. J. Hydrogen Energy, 39(9), 4299-4310 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.004
  15. Jee, C. S. Y., Ozguven, N., Guo, Z. X., and Evans, J. R. G., "Preparation of high porosity metal foams," Metall. Mater. Trans. B, 31(6), 1345-1352 (2000). https://doi.org/10.1007/s11663-000-0021-3
  16. Kim, D., Yu, B., Cha, P., Yoon, W., Byun, J., and Kim, S., "A study on FeCrAl foam as effective catalyst support under thermal and mechanical stresses," Surf. Coatings Technol., 209, 169-176 (2012). https://doi.org/10.1016/j.surfcoat.2012.08.017
  17. Samad, J. E., Nychka, J. A., and Semagina, N. V., "Structured catalysts via multiple stage thermal oxidation synthesis of FeCrAl alloy sintered microfibers," Chem. Eng. J., 168(1), 470-476 (2011). https://doi.org/10.1016/j.cej.2011.01.058
  18. Giani, L., Cristiani, C., Groppi, G., and Tronconi, E., "Washcoating method for $Pd/\gamma-Al_2O_3$ deposition on metallic foams," Appl. Catal. B Environ., 62(1-2), 121-131 (2006). https://doi.org/10.1016/j.apcatb.2005.07.003
  19. Meille, V., "Review on methods to deposit catalysts on structured surfaces," Applied Catalysis A: General, 315, 1-17 (2006). https://doi.org/10.1016/j.apcata.2006.08.031
  20. Cheekatamarla, P. K., and Finnerty, C. M., "Reforming catalysts for hydrogen generation in fuel cell applications," J. Power Sources, 160(1), 490-499 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.078
  21. Hong, S., Heo, S., Kim, W., Jo, Y. M., Park, Y.-K. and Jeon, J.-K., "Catalytic decomposition of an energetic ionic liquid solution over hexaaluminate catalysts," Catalysts, 9(80), 1-15 (2019).
  22. Heo, S., Kim, M., Lee, J., Park, Y. C., and Jeon, J.-K., "Decomposition of ammonium dinitramide-based liquid propellant over Cu/hexaaluminate pellet catalysts," Korean J. Chem. Eng., 36, 660-668 (2019). https://doi.org/10.1007/s11814-019-0253-7
  23. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. W., "Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report)," Pure Appl. Chem., 87(9-10), 1051-1069 (2015). https://doi.org/10.1515/pac-2014-1117