DOI QR코드

DOI QR Code

Antioxidant, anti-cholinesterase, and inflammation inhibitory activities of fruiting bodies of Phallus impudicus var. impudicus L.

말뚝버섯 자실체의 항산화, 항콜린에스테라제 및 염증 저해 활성

  • Yoon, Ki Nam (Department of Clinical Laboratory Science, Ansan University) ;
  • Lee, Tae Soo (Division of Life Sciences, Incheon National University)
  • Received : 2019.08.30
  • Accepted : 2019.09.23
  • Published : 2019.09.30

Abstract

Phallus impudicus var. impudicus L. is an edible mushroom that has long been used as folk medicine in China. The aim of this study was to evaluate the antioxidant, anti-cholinesterase, and inflammation inhibitory activities of a methanol extract of fruiting bodies of P. impudicus var. impudicus L. The extract exhibited good 1,1-diphenyl-2-picrylhydrazyl scavenging activity, excellent ferrous ion chelating activity, and moderate hydroxyl radical scavenging activity compared with BHT at 2.0 mg/ml. However, the reducing power of the extract was significantly lower than that the BHT positive control. Although the inhibitory activities of methanol extract on acetylcholinesterase and butyryl cholinesterase were significantly lower than the galanthamine positive control at the concentration tested, the inhibition of acetylcholinesterase and butyryl cholinesterase was 52.83% and 55.17%, respectively, at 1.0 mg/ml. The methanol extract also demonstrated excellent inhibition of inflammation-related activities, such as production of nitric oxide in lipopolysaccharide-induced RAW 264.7 macrophage cells and acute edema induced by administration of carrageenan on the hind paw of rats. The collective results suggest that the fruiting body of P. impudicus var. impudicus L. might be a good source of antioxidant, anti-cholinesterase, and anti-inflammation compounds.

본 연구에서는 말뚝버섯의 자실체 메탄올 추출물의 항산화, cholinesterase 저해 및 항염증 효과를 탐색하였다. DPPH 라디칼 소거능, hydroxyl radical 소거능, 철 이온 제거능 및 환원력 등의 항산화 효과를 측정한 결과 DPPH 라디칼 소거능, hydroxyl radical 소거능 및 환원력은 양성대조군으로 사용한 BHT에 비해 낮았으나 실험에 시용한 2.0 mg/ml의 농도에서 50% 이상의 저해효과를 나타내었고 철 이온 제거능은 BHT에 비해 높게 나타나서 다른 종류의 식의약용 버섯에 비해 항산화 효과가 우수하였다. 치매환자의 기억력 감퇴와 관련된 acetylcholinesterase와 butyrylcholinesterase의 저해실험에서 말뚝버섯 자실체의 메탄올 추출물은 실험에 사용한 전 농도 범위에서 양성대조군인 galanthamine에 비해 유의하게 낮았지만 1.0 mg/ml의 농도에서 50% 이상의 저해 효과를 나타냈다. In vitro 항염증 실험에서 RAW 264.7 대식세포에 서로 다른 농도의 메탄올 추출물을 처리한 후 염증 유발물질인 LPS를 처리하여 RAW 264.7 세포가 생성한 NO의 양을 측정한 결과 추출물을 투여한 실험군의 NO 농도가 LPS만 단독으로 처리한 양성대조군에 비해 유의하게 낮았고 처리한 메탄올 추출물의 농도가 증가함에 따라 생성된 NO의 양은 유의하게 감소하는 경향을 나타났다. 또한 in vivo 항염증 실험에서 먼저 각기 다른 농도의 메탄올 추출물을 생쥐의 뒷발에 주사한 후 추가로 기염제인 carrageenan을 주사하여 흰쥐 뒷발에 유도된 부종 (edema)이 추출물에 의해 저해되는 정도와 염증 치료제로 처방되는 indomethacin을 양성대조군으로 하여 실험을 진행하였다. 실험 결과 흰쥐에 주사한 말뚝버섯 자실체의 메탄올 추출물의 농도가 증가함에 따라 흰쥐 뒷발에 유도된 부종의 용적도 농도 의존적으로 유의하게 감소하는 것이 관찰되어 말뚝버섯 자실체에는 염증을 저해하는 성분이 함유되어 있는 것으로 사료되었다. 따라서 말뚝버섯 자실체의 메탄올 추출물에는 항산화, acetylcholinesterase과 butyrylcholinesterase의 저해 및 항염증 효과를 나타내는 유용 성분이 함유되어 있어 앞으로 의약용 기초 소재로서의 이용 연구가 필요하다고 사료된다.

Keywords

References

  1. An GH, Cho JH, Lee KH, Han JG. 2019. Physiological activities of extracts of wild mushrooms collected in Korea. J Mushrooms 17(2): 70-77.
  2. Behl C. 1999. Alzheimer's disease and oxidative stress: implications for novel therapeutic approaches. Prog Neurobiol 57: 301-323. https://doi.org/10.1016/S0301-0082(98)00055-0
  3. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  4. Cho HS, Lee HJ, Lee SJ, Shin JH, Lee HU, Sung NJ. 2008. Antioxidative effects of Pleurotus eryngii and its by-products. J Life Sci 18(10): 1360-1368. https://doi.org/10.5352/JLS.2008.18.10.1360
  5. Cho YS, Kim ND, Kim SA. 1978. Effects of concurrent administration of aspirin and prednisolone on the anti-inflammatory and antipyretic activities in rats. Yakhak Hoeji 22: 128-137.
  6. Costa B, Colleoni M, Conti S, Parolaro D, Franke C, Trovato AE, Giagnoni G. 2004. Oral anti-inflammatory activity of cannabidiol, an non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw. Naunyn Schmiedebergs Arch Pharmacol 369: 294-299. https://doi.org/10.1007/s00210-004-0871-3
  7. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  8. Fierro IM, Serhan CN. Serhan. 2001. Mechanisms in anti-inflammation and resolution: the role of lipoxins and aspirin triggered lipoxins. Braz J Med Biol Res 34: 555-566. https://doi.org/10.1590/S0100-879X2001000500002
  9. Garthwaite J. 2010. New insight into the functioning of nitric oxide receptive guanylyl cyclase: Physiological and pharmacological implications. Mol Cell Biochem 334: 221-232. https://doi.org/10.1007/s11010-009-0318-8
  10. Gonzalez-Palma I, Escalona-Buendia HB, Ponce-Alquicira E, Tellez-Tellez M, Gupta VK, Diaz-Godinez G, Soriano-Santos J. 2016. Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages Front Microbiol 7:1099.doi:10.3389/fmicb.2016.01099
  11. Gulcin I, Buyukokuroglu ME, Oktay M, Kufrevioglu OI. 2003. Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe. J Ethnopharmacol 86: 51-58. https://doi.org/10.1016/S0378-8741(03)00036-9
  12. Halliwell B, Gutteridge JM, Aruoma OI. 1987. The deoxyribose method: a simple "test-tube"assay for the determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165: 215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  13. Huang SJ, Mau JL. 2006. Antioxidant properties of methanolic extracts from Agaricus blazei with various doses of $\gamma$-irradiation. Lebensm Wiss Technol 39(7): 707-716. https://doi.org/10.1016/j.lwt.2005.06.001
  14. Ikeya Y, Takeda S, Tunakawa M, Karakida H, Toda K, Yamaguchi T, Aburada M. 2004. Cognitive improving and cerebral protective effects of acylated oligosaccharides in Polygala tenuifolia. Biol Pharm Bull 27: 1081-1085. https://doi.org/10.1248/bpb.27.1081
  15. Kang HW. 2012. Antioxidant and anti-inflammatory effects of extracts from Flammulina velutipes (Curtis) Singer. J Kor Soc Food Sci Nutr 41: 1072-1078. https://doi.org/10.3746/jkfn.2012.41.8.1072
  16. Kang SW. 2013. Role reactive oxygen species in cell death pathways. Hanyang Med Rev 33: 77-82. https://doi.org/10.7599/hmr.2013.33.2.77
  17. Leong LP, Shui G. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76: 69-75. https://doi.org/10.1016/S0308-8146(01)00251-5
  18. Lim JH, Kim SH, Park NH, Moon CG, Kang SS, Kim SH, Shin DH, Kim JC. 2010. Acute and chronic anti-inflammatory effects of Phellinus linteus water extract in rats J Biomed Res 11: 27-35.
  19. Liu F, Ooi VEC, Chang ST. 1996. Free radical scavenging activity of mushroom polysaccharide extracts. Life Sci. 60, 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0
  20. Lo SH. 2005. Quality evaluation of Agaricus bisporus, Pleurutus eryngii, Pleurotus ferulae, Pleurotus ostreatus and their antioxidant properties during postharvest storage, Master's Thesis. National Chung-Hsing University, Taichung, Taiwan.
  21. Mau JL, Chang CH, Huang CJ, Chen CC. 2004. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87: 111-118. https://doi.org/10.1016/j.foodchem.2003.10.026
  22. Moreno MIN, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical scavenging activity of propolis from several region of Argentina. J Enthnopharm 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  23. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Immunol Meth 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  24. Muruke MH. 2014. Evaluation of antioxidant and iron chelating activities of a wild edible oyster mushroom Pleurotus cystidiosus from Tanzania. Food Sci Quali Manage 29: 18-28.
  25. Nguyen TK, Shin DB, Lee KR, Shin PG, Cheong JC, Yoo YB, Lee MW, Jin GH, Kim HY, Im KH, Lee TS. 2013. Antioxidant, anti-inflammatory and anti-acetylcholinesterase activities of fruiting bodies of Phellinus xeranticus. J Mushroom Sci Prod 11: 278-286. https://doi.org/10.14480/JM.2013.11.4.278
  26. Nordberg A. 1996. Pharmacological treatment of cognitive dysfunctionin in dementia disorders. Acta Neurol Scand Suppl 168: 87-92. https://doi.org/10.1111/j.1600-0404.1996.tb00379.x
  27. Orhan I, Aslan S, Kartal M, Sener B, Husnu Can Baser K. 2008. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem 108: 663-668. https://doi.org/10.1016/j.foodchem.2007.11.023
  28. Park WH, LEE JH. 2011. New wild fungi of Korea. Kyo-Hak Publishing Co., Ltd.. pp. 218. Seoul, Korea.
  29. Park WH, Lee HD. 1997. Illustrated book of Korean medicinal mushrooms. Kyo-Hak Publishing Co., Ltd.. pp. 576. Seoul, Korea.
  30. Punitha CS, Rajasekaran M. 2014. Free radical scavenging activity of fruiting body extracts of an edible mushroom, Volvariella volvacea (Bull.ex Fr.) Singer: an in vitro study. Asian J Biomedi Pharmaceut Sci 30: 6-11. https://doi.org/10.15272/ajbps.v4i30.469
  31. Ryu JH, Ahn H, Kim JY, Kim YK. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res 17: 485-489. https://doi.org/10.1002/ptr.1180
  32. Selkoe DJ. 1991. The molecular pathology of Alzheimer's disease. Neuron 6: 487-498 https://doi.org/10.1016/0896-6273(91)90052-2
  33. Shim SM, Im KH, Kim JW, Shim MJ, Lee MW, Lee TS. 2003. Studies on immuno-modulatory and antitumor effects of crude polysaccharides extracted from Paecilomyces sinclairii. Korean J Mycol 31: 155-160. https://doi.org/10.4489/KJM.2003.31.3.155
  34. Song CH, Seo YC, Choi WY, Lee CG, Kim DU, Chung JY, Chung HC, Park DS, Ma CJ, Lee HY. 2012. Enhancement of antioxidant activity of Codonopsis lanceolata by stepwise steaming process. Kor J Med Crop Sci 20: 238-244. https://doi.org/10.7783/KJMCS.2012.20.4.238
  35. Swain T, Hillis WE. 1959. The phenolic constituents of Prunus domestica. I. the quantitative analysis of phenolic constituents. J Sci Food Agric 10: 63-68. https://doi.org/10.1002/jsfa.2740100110
  36. Um SN, Jin GE, Park KW, Yu YB, Park KM. 2010. Physiological activity and nutritional composition of Pleurotus species. Korean J Food Sci Technol 42: 90-96.
  37. Weisburger JH. 1999. Mechanism of action of antioxidants as exemplified in vegetables, tomatoes, and tea. Food Chem Toxicol 37: 943-948. https://doi.org/10.1016/S0278-6915(99)00086-1
  38. Winter CA, Risley EA, Nuss GW. 1962. Carrageenan induced edema in the hind paw of rat as an assay for anti-inflammatory activity. Proc Soc Exp Biol Med 111: 544-547. https://doi.org/10.3181/00379727-111-27849
  39. Yena GC, Duhb PD, Tsaia L. 2002. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem 79: 307-313. https://doi.org/10.1016/S0308-8146(02)00145-0
  40. Ying CC, Wang YC, Tang HF. 1987. Icons of medicinal fungi from China. Science Press, pp. 477. Beijng, China.
  41. Yoon JH, Park SG, Lee MJ, Park JY, Seo KS, Woo KC, Lee CE. 2013. Antioxidant, anti-inflammatory effects of Bletilla striata Reichenbach fil. fractions as cosmetic. J Life Sci 23: 1073-1078. https://doi.org/10.5352/JLS.2013.23.9.1073
  42. Yoon KN, Jang HS. 2018. Anti-xanthine oxidase, anti-cholinesterase, and anti-inflammatory activities of fruiting bodies of Phellinus gilvus. Korean J Clin Lab Sci 50: 225-235. https://doi.org/10.15324/kjcls.2018.50.3.225