DOI QR코드

DOI QR Code

An analysis of runoff characteristic by using soil moisture in Sulma basin

설마천 연구지역에서의 토양수분량을 활용한 유출 발생 특성분석

  • Kim, Kiyoung (Korea Institute of Hydrological Survey, Research & Development Division) ;
  • Lee, Yongjun (Korea Institute of Hydrological Survey, Research & Development Division) ;
  • Jung, Sungwon (Korea Institute of Hydrological Survey) ;
  • Lee, Yeongil (Korea Institute of Hydrological Survey, Research & Development Division)
  • 김기영 (한국수자원조사기술원 연구개발실) ;
  • 이용준 (한국수자원조사기술원 연구개발실) ;
  • 정성원 (한국수자원조사기술원) ;
  • 이연길 (한국수자원조사기술원 연구개발실)
  • Received : 2019.07.22
  • Accepted : 2019.08.29
  • Published : 2019.09.30

Abstract

Soil moisture and runoff have very close relationship. Especially the water retention capacity and drainage characteristics of the soil are determined by various factors of the soil. In this study, a total of 40 rainfall events were identified from the entire rainfall events of Sulma basin in 2016 and 2017. For each selected events, the constant-K method was used to separate direct runoff and baseflow from total flow and calculate the runoff coefficient which shows positive exponential curve with Antecedent Soil Moisture (ASM). In addition to that, the threshold of soil moisture was determined at the point where the runoff coefficient starts increasing dramatically. The threshold of soil moisture shows great correlation with runoff and depth to water table. It was founded that not only ASM but also various factors, such as Initial Soil Moisture (ISM), storage capacity of soil and precipitation, affect the results of runoff response. Furthermore, wet condition and dry condition are separated by ASM threshold and the start and peak response are analyzed. And the results show that the response under wet condition occurred more quickly than that of dry condition. In most events occurred in dry condition, factors reached peak in order of soil moisture, depth to water table and runoff. However, in wet condition, they reached peak in order of depth to water table, runoff and soil moisture. These results will help identify the interaction among factors which affect the runoff, and it will help establish the relationship between various soil conditions and runoff.

토양수분과 유출은 매우 밀접한 관계를 가지고 있으며, 특히 토양 내의 여러 요소들에 의해 토양의 수분보유능력과 배수의 특성이 결정된다. 본 연구에서는 2016년, 2017년 설마천 유역에서 총 40개의 사상을 분리하였다. 선정한 사상별로 constant-K 방법을 적용하여 직접유출과 기저유출을 분리하고 유출계수를 산정하였다. 산정된 유출계수는 선행토양함수와 지수함수 형태의 증가를 보였다. 또한 유출계수가 급증하기 시작하는 토양수분의 임계값을 선정하였으며, 이 값은 유출과 지하수면과의 큰 상관관계를 나타내었다. 선행토양함수뿐만 아니라 초기 토양수분, 토양 저류량, 강우량 등 여러 인자들도 유출 결과에 영향을 미치는 것으로 분석되었다. 또한 선행토양수분의 임계값에 따라 강우사상을 건조, 습윤 상태로 분리하여 시작 반응과 첨두 반응을 분석해 보았으며, 습윤 상태에서의 반응이 건조 상태에서 보다 빠르게 발생하였다. 건조 상태에 속하는 대부분의 사상에서는 토양수분이 정점에 도달한 후 지하수면과 유출량 순으로 정점에 도달하는 첨두 반응이 일어났으나 습윤 상태에서는 반대로 지하수면과 유출량이 토양수분보다 먼저 정점에 도달하였다. 본 연구의 결과는 유출에 기여하는 인자들 사이의 상호작용을 확인하고 토양의 다양한 조건과 유출 사이의 관계를 규명하는 데에 크게 기여할 것으로 판단된다.

Keywords

References

  1. Arya, L. M., and Paris, J. F. (1981). "A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data 1." Soil Science Society of America Journal, Vol. 45, No. 6, pp. 1023-1030. https://doi.org/10.2136/sssaj1981.03615995004500060004x
  2. Blume, T., Zehe, E., and Bronstert, A. (2007). "Rainfall-runoff response,event-based runoff coefficients and hydrograph separation."Hydrological Sciences Journal, Vol. 52, No. 5, pp. 843-862. https://doi.org/10.1623/hysj.52.5.843
  3. Blume, T., Zehe, E., and Bronstert, A. (2009). "Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes." Hydrology and Earth System Sciences, Vol. 13, No. 7, pp. 1215-1233. https://doi.org/10.5194/hess-13-1215-2009
  4. Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T. (2011). "The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements." Hydrology and Earth System Sciences, Vol. 15, No. 3, pp. 1675-1698. https://doi.org/10.5194/hess-15-1675-2011
  5. James, A. L., and Roulet, N. T. (2007). "Investigating hydrologic connectivity and its association with threshold change in runoff response in a temperate forested watershed." Hydrological Processes: An International Journal, Vol. 21, No. 25, pp. 3391-3408. https://doi.org/10.1002/hyp.6554
  6. Jeong, J., Cho, S., Baik, J., and Choi, M. (2018). "A study on the establishment of a Korean soil moisture network (2): Measurement of intermediate-scale soil moisture using a cosmic-ray sensor." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 7, pp. 83-91. https://doi.org/10.9798/kosham.2018.18.7.83
  7. Kaufmann, R. K., and Cleveland, C. J. (2008). Environmental science. McGraw-Hill College, New York, N.Y.
  8. Kim, K., Jeong, S., and Lee, Y. (2019). "A Study for establishment of soil moisture station in mountain terrain (1): the representative analysis of soil moisture for construction of Cosmic-ray verification system." Journal of Korea Water Resource Association, Vol. 52, No. 1, pp. 51-60.
  9. Korea Institute of Civil Engineering and Building Technology (KICT) (2013). Hydrological survey for flood forecasting of the mountainous river basin. pp. 7-12.
  10. Kwon, J. H., Park, M. J., and Kim, J. H. (2004), "Rainfall analysis to estimate the amount of non-point source pollution." Journal of Korea Water Resources Association 2004 Conference, pp. 666-670.
  11. Lee, Y., Lee, J., Choi, M., and Jung, S. (2015). "Evaluation of MODISderived evapotranspiration according to the water budget analysis." Journal of Korea Water Resources Association, Vol. 48, No.10, pp. 831-843. https://doi.org/10.3741/JKWRA.2015.48.10.831
  12. Liu, Y. B., Gebremeskel, S., De Smedt, F., Hoffmann, L., and Pfister, L. (2006). "Predicting storm runoff from different land ‐use classes using a geographical information system‐based distributed model." Hydrological Processes: An International Journal, Vol. 20, No. 3, pp. 533-548. https://doi.org/10.1002/hyp.5920
  13. L'vovich, M. I. (1979). World water resources and their future. American Geophysical Union, Washington, D.C.
  14. McGuire, K. J., and McDonnell, J. J. (2010). "Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities." Water Resources Research, Vol. 46, No. 10.
  15. Musy, A., and Soutter, M. (1991). Physique du sol. Vol. 6. PPUR presses polytechniques. Lausanne, Switzerland.
  16. Mutreja, K. N. (1990). Applied hydrology. Tata McGraw-Hill, New York, N.Y.
  17. Penna, D., Tromp-van Meerveld, H. J., Gobbi, A., Borga, M., and Dalla Fontana, G. (2011). "The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment." Hydrology and Earth System Sciences, Vol. 15, No. 3, pp. 689-702. https://doi.org/10.5194/hess-15-689-2011
  18. Reichle, R. H., and Koster, R. D. (2005). "Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model." Geophysical Research Letters, Vol. 32, No. 2.
  19. Reynolds, S. G. (1970). "The gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems." Journal of Hydrology, Vol. 11 No. 3, pp. 258-273. https://doi.org/10.1016/0022-1694(70)90066-1
  20. Song, S., and Wang, W. (2019). "Impacts of antecedent soil moisture on the rainfall-runoff transformation process based on highresolution observations in soil tank experiments." Water, Vol. 11, No. 2, pp. 296. https://doi.org/10.3390/w11020296
  21. Subramanya, K. (2013). Engineering hydrology, 4e. Tata McGraw-Hill Education, New York, N.Y.
  22. Topp, G. C. (1971). "Soil water hysteresis in silt loam and clay loam soils." Water Resources Research, Vol. 7, No. 4, pp. 914-920. https://doi.org/10.1029/WR007i004p00914
  23. Walker, J. P., Willgoose, G. R., and Kalma, J. D. (2004). "In situ measurement of soil moisture: a comparison of techniques." Journal of Hydrology, Vol. 293, No. 1-4, pp. 85-99. https://doi.org/10.1016/j.jhydrol.2004.01.008
  24. Zehe, E., Becker, R., Bardossy, A., and Plate, E. (2005). "Uncertainty of simulated catchment runoff response in the presence of threshold processes: Role of initial soil moisture and precipitation." Journal of hydrology, Vol. 315, No. 1-4, pp. 183-202. https://doi.org/10.1016/j.jhydrol.2005.03.038