DOI QR코드

DOI QR Code

Assessment of variability and uncertainty in bias correction parameters for radar rainfall estimates based on topographical characteristics

지형학적 특성을 고려한 레이더 강수량 편의보정 매개변수의 변동성 및 불확실성 분석

  • Kim, Tae-Jeong (Research & Development Division, Korea Institute of Hydrological Survey) ;
  • Ban, Woo-Sik (Hangang River Regional Division Water Resources Management Center, K-Water) ;
  • Kwon, Hyun-Han (Department of Civil & Environmental Engineering, Sejong University)
  • 김태정 (한국수자원조사기술원 연구개발실) ;
  • 반우식 (한국수자원공사 한강권역부문 한강물관리처 물관리센터) ;
  • 권현한 (세종대학교 공과대학 건설환경공학과)
  • Received : 2019.07.29
  • Accepted : 2019.08.24
  • Published : 2019.09.30

Abstract

Various applications of radar rainfall data have been actively employed in the field of hydro-meteorology. Since radar rainfall is estimated by using predefined reflectivity-rainfall intensity relationships, they may not have sufficient reproducibility of observations. In this study, a generalized linear model is introduced to better capture the Z-R relationship in the context of bias correction within a Bayesian regression framework. The bias-corrected radar rainfall with the generalized linear model is more accurate than the widely used mean field bias correction method. In addition, we analyzed variability of the bias correction parameters under various geomorphological conditions such as the height of the weather station and the separation distance from the radar. The identified relationship is finally used to derive a regionalized formula which can provide bias correction factors over the entire watershed. It can be concluded that the bias correction parameters and regionalized method obtained from this study could be useful in the field of radar hydrology.

최근 수문기상학 분야에서 레이더 강수량을 활용한 응용연구가 활발하게 진행되고 있다. 하지만 레이더 강수량은 경험적인 레이더 반사도-강수강도 관계식을 활용하여 레이더 강수량을 추정하기 때문에 실제 지상에 도달하는 강수량과 정량적인 오차가 필연적으로 발생한다. 따라서 본 연구에서는 레이더 강수량 편의보정을 위하여 Bayesian 추론기법과 일반화 선형모형을 연계하여 불확실성을 고려한 편의보정 매개변수를 산정하였다. 일반화 선형모형을 적용한 레이더 강수량 편의보정 결과는 현재 널리 사용되고 있는 평균보정 기법보다 우수한 통계적 효율기준을 제시하였다. 추가로 지형학적 특성에 따른 편의보정 매개변수의 변동성을 분석하여 고도 및 이격거리에 따른 편의보정 매개변수의 지역화 공식을 제시하였다. 본 연구를 통하여 개발된 레이더 강수량 편의보정 매개변수 산정 및 지역화 결과는 레이더와 관련된 다양한 연구에 활용성이 클 것으로 판단된다.

Keywords

References

  1. Adeyewa, Z. D., and Nakamura, K. (2003). "Validation of TRMM radar rainfall data over major climatic regions in Africa." Journal of Applied Meteorology, Vol. 42, No. 2, pp. 331-347. https://doi.org/10.1175/1520-0450(2003)042<0331:VOTRRD>2.0.CO;2
  2. Bae, D. H., Jung, I. W., and Chang, H. J. (2008). "Long‐term trend of precipitation and runoff in Korean river basins." Hydrological Processes, Vol. 22, No. 14, pp. 2644-2656. https://doi.org/10.1002/hyp.6861
  3. Bracken, C., Holman, K. D., Rajagopalan, B., and Moradkhani, H. (2018). "A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency analysis." Water Resources Research, Vol. 54, No. 1, pp. 243-255. https://doi.org/10.1002/2017WR020403
  4. Carpenter, T. M., and Georgakakos, K. P. (2004). "Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model." Journal of Hydrology, Vol. 298, No. 1-4, pp. 202-221. https://doi.org/10.1016/j.jhydrol.2004.03.036
  5. Cecinati, F., Moreno-Rodenas, A., Rico-Ramirez, M., ten Veldhuis, M. C., and Langeveld, J. (2018). "Considering rain gauge uncertainty using kriging for uncertain data." Atmosphere, Vol. 9, No. 11, p. 446. https://doi.org/10.3390/atmos9110446
  6. Choi, J. T., and Lee, T. Y. (2000). "Capability of observing systems over the Korean peninsula for the observation of mesoscale atmospheric structure - A study using observing system simulation experiments." Asia-Pacific Journal of Atmospheric Sciences, Vol. 36, No. 6, pp. 619-630 (in Korean).
  7. Chumchean, S., Seed, A., and Sharma, A. (2006). "Correcting of real-time radar rainfall bias using a Kalman filtering approach." Journal of Hydrology, Vol. 317, No. 1-2, pp. 123-137. https://doi.org/10.1016/j.jhydrol.2005.05.013
  8. Dai, Q., Rico‐Ramirez, M. A., Han, D., Islam, T., and Liguori, S. (2015). "Probabilistic radar rainfall nowcasts using empirical and theoretical uncertainty models." Hydrological Processes, Vol. 29, No. 1, pp. 66-79. https://doi.org/10.1002/hyp.10133
  9. Delrieu, G., Braud, I., Berne, A., Borga, M., Boudevillain, B., Fabry, F., Freer, J., Gaume, E., Nakakita, E., Seed, A., Tabary, P., and Uijlenhoet, R. (2009). "Weather radar and hydrology." Advances in Water Resources, Vol. 32, No. 7, pp. 969-974. https://doi.org/10.1016/j.advwatres.2009.03.006
  10. Gelman, A. (2004). "Parameterization and Bayesian modeling." Journal of the American Statistical Association, Vol. 99, No. 466, pp. 537-545. https://doi.org/10.1198/016214504000000458
  11. Gelman, A. (2006). "Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)." Bayesian analysis, Vol. 1, No. 3, pp. 515-534. https://doi.org/10.1214/06-BA117A
  12. Gelman, A., Lee, D., and Guo, J. (2015). "Stan: A probabilistic programming language for Bayesian inference and optimization." Journal of Educational and Behavioral Statistics, Vol. 40, No. 5, pp. 530-543. https://doi.org/10.3102/1076998615606113
  13. Goovaerts, P. (2000). "Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall." Journal of Hydrology, Vol. 228, No. 1-2, pp. 113-129. https://doi.org/10.1016/S0022-1694(00)00144-X
  14. Haberlandt, U. (2007). "Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event." Journal of Hydrology, Vol. 332, No. 1-2, pp. 144-157. https://doi.org/10.1016/j.jhydrol.2006.06.028
  15. Kang, N. R., Joo, H. J., Lee, M. J., and Kim, H. S. (2017). "Generation of radar rainfall ensemble using probabilistic approach." Journal of Korea Water Resources Association, Vol. 50, No. 3, pp. 155-167 (in Korean). https://doi.org/10.3741/JKWRA.2017.50.3.155
  16. Kim, K. H., Lee, G. W., Kang, D. H., Kwon, B. H., and Han, K. Y. (2014). "Adjustment of radar precipitation estimation based on the local gauge correction method." Journal of the Korean earth science society, Vol. 35, No. 2, pp. 115-130 (in Korean). https://doi.org/10.5467/JKESS.2014.35.2.115
  17. Kim, T. J., Kwon, H. H., and Lima, C. (2018). "A bayesian partial pooling approach to mean field bias correction of weather radar rainfall estimates: Application to osungsan weather radar in South Korea." Journal of Hydrology, Vol. 565, pp. 14-26. https://doi.org/10.1016/j.jhydrol.2018.07.082
  18. Kim, T. J., Lee, D. R., and Kwon, H. H. (2017). "Assessment of merging weather radar precipitation data and ground precipitation data according to various interpolation method." Journal of Korea Water Resources Association, Vol. 50, No. 12, pp. 849-862 (in Korean). https://doi.org/10.3741/JKWRA.2017.50.12.849
  19. Korea Observation Unified System, Korea Meteorological Administration (2019). accessed 1 July 2019,
  20. Krajewski, W. F., and Smith, J. A. (2002). "Radar hydrology: rainfall estimation." Advances in water resources, Vol. 25, No. 8-12, pp. 1387-1394. https://doi.org/10.1016/S0309-1708(02)00062-3
  21. Krajewski, W. F., Villarini, G., and Smith, J. A. (2010). "Radar-rainfall uncertainties: Where are we after thirty years of effort?." Bulletin of the American Meteorological Society, Vol. 91, No. 1, pp. 87-94. https://doi.org/10.1175/2009BAMS2747.1
  22. Kwon, H. H., and Lall, U. (2016). "A copula‐based nonstationary frequency analysis for the 2012-2015 drought in California." Water Resources Research, Vol. 52, No. 7, pp. 5662-5675. https://doi.org/10.1002/2016WR018959
  23. Lee, H., Zhang, Y., Seo, D. J., and Xie, P. (2015). "Utilizing satellite precipitation estimates for streamflow forecasting via adjustment of mean field bias in precipitation data and assimilation of streamflow observations." Journal of Hydrology, Vol. 529, pp. 779-794. https://doi.org/10.1016/j.jhydrol.2015.08.057
  24. Lee, J. H., and Heo, J. H. (2011). "Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea." Journal of Hydrology, Vol. 409, No. 1-2, pp. 30-48. https://doi.org/10.1016/j.jhydrol.2011.07.031
  25. Lee, J. K. (2018). "Uncertainty analysis of quantitative rainfall estimation process based on hydrological and meteorological radars." Journal of Korea Water Resources Association, Vol. 51, No. 5, pp. 439-449 (in Korean). https://doi.org/10.3741/JKWRA.2018.51.5.439
  26. Lima, C. H., Lall, U., Troy, T., and Devineni, N. (2016). "A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates." Journal of Hydrology, Vol. 541, pp. 816-823. https://doi.org/10.1016/j.jhydrol.2016.07.042
  27. Marshall, J. S., and Palmer, W. M. K. (1948). "The distribution of raindrops with size." Journal of Meteorology, Vol. 5, No. 4, pp. 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  28. Meira Neto, A. A., Oliveira, P. T. S., Rodrigues, D. B., and Wendland, E. (2018). "Improving streamflow prediction using uncertainty analysis and bayesian model averaging." Journal of Hydrologic Engineering, Vol. 23, No. 5, p. 05018004. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001639
  29. Seo, D. J., Breidenbach, J. P., and Johnson, E. R. (1999). "Real-time estimation of mean field bias in radar rainfall data." Journal of Hydrology, Vol. 223, No. 3-4, pp. 131-147. https://doi.org/10.1016/S0022-1694(99)00106-7
  30. Sinclair, S., and Pegram, G. (2005). "Combining radar and rain gauge rainfall estimates using conditional merging." Atmospheric Science Letters, Vol. 6, No. 1, pp. 19-22. https://doi.org/10.1002/asl.85
  31. Smith, J. A., and Krajewski, W. F. (1991). "Estimation of the mean field bias of radar rainfall estimates." Journal of Applied Meteorology, Vol. 30, No. 4, pp. 397-412. https://doi.org/10.1175/1520-0450(1991)030<0397:EOTMFB>2.0.CO;2
  32. Todini, E. (2001). "A bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements." Hydrology and Earth System Sciences Discussions, Vol. 5, No. 2, pp. 187-199. https://doi.org/10.5194/hess-5-187-2001
  33. Villarini, G., and Krajewski, W. F. (2010). "Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall." Surveys in Geophysics, Vol. 31, No. 1, pp. 107-129. https://doi.org/10.1007/s10712-009-9079-x
  34. Yoo, C., Park, C. S., and Yoon, J. S. (2011). "Decision of G/R ratio for the correction of mean-field bias of radar rainfall and linear regression problem." Journal of The Korean Society of Civil Engineers, Vol. 31, No. 5B, pp. 393-403 (in Korean). https://doi.org/10.12652/KSCE.2011.31.5B.393
  35. Yoon, S. S., and Bae, D. H. (2013). "Optimal rainfall estimation by considering elevation in the Han River Basin, South Korea." Journal of Applied Meteorology and Climatology, Vol. 52, No. 4, pp. 802-818. https://doi.org/10.1175/JAMC-D-11-0147.1