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An Alternative Optimization Procedure for Parameter Design

Yong Man Kwon†

Abstract

Taguchi has used the signal-to-noise ratio (SN) to achieve the appropriate set of operating conditions where variability

around target is low in the Taguchi parameter design. Taguchi has dealt with having constraints on both the mean and

variability of a characteristic (the dual response problem) by combining information on both mean and variability into

an SN. Many Statisticians criticize the Taguchi techniques of analysis, particularly those based on the SN. In this paper

we propose a substantially simpler optimization procedure for parameter design to solve the dual response problems

without resorting to SN.
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1. Introduction

Taguchi Quality Engineering has contributed greatly

to the statistical field widely used to improve the quality

throughout product design stage[1].

In the Taguchi parameter design, the product array

using the orthogonal array table was subjected to data

analysis using the SN by performing experimental setup

considering all the interaction effects of the control fac-

tor and the noise factor. In the product array, the noise

factor plays a role in reducing quality variation of qual-

ity characteristics, which makes it possible to design a

parameter which can find the optimum condition of

control factor approaching the target value while the

average of quality characteristics is insensitive to vari-

ation. Products and their manufacturing processes are

influenced both by control factors that can be controlled

by designers and by noise factors that are difficult or

expensive to control such as environmental conditions.

The basic idea of parameter design is to identify,

through exploiting interactions between control factors

and noise factors, appropriate settings of control factors

that make the system’s performance robust to changes

in the noise factors. Parameter design is a quality

improvement technique proposed by the Japanese qual-

ity expert Taguchi[2], which was described by Kackar[3]

and others.

Although Taguchi quality engineering has made a

great contribution to improving quality, many problems

have been pointed out in the use of SN in analyzing

data, and alternatives have been studied by various

scholars. In this regard, the analysts such as Box[4] pro-

posed an analytical method through data transformation.

Vining and Myers[5] used regression analysis from

repeated measurement data instead of using SN, For the

first time as an alternative method to obtain the opti-

mum condition of quality characteristics. They analyzed

the experimental data using the optimization technique

for the dual response function of Myers and Carter[6].

Since then, scholars such as Copeland and Nelson[7]

have proposed different optimization methods for three

different characteristics.

The purpose of this paper is to propose a reasonable

optimization formula for data analysis in parameter

design and to find an optimization method. In addition,

the new optimization formula proposed in this paper

can be applied to the alternative method that improves

the problem in the Taguchi method mentioned above.

This paper is to use the alternative method to find the

optimum condition of the quality characteristic by sep-

arating the estimated mean model and the variance

model without using SN, Chapter 4 presents the advan-

tages of this paper based on the contents of Chapters 2
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and 3. An example is illustrated to show the proposed

method.

2. An Optimization Procedure for 
Parameter Design

In analyzing the data in the parameter design, prob-

lems have arisen due to the use of SN, a performance

measure that combines mean and variation(or variance).

Suppose that the quality characteristics ( ) are deter-

mined by the control factors (x) and the noise factors

(z). The product array is possible to obtain repeated

quality characteristics ( ) by the noise factor under the

different experimental condition of the control factors. 

The sample mean (y) and sample variance(or stan-

dard deviation (v)) can be obtained from these data.

Therefore, instead of using the SN, we can consider an

alternative method to obtain the optimal condition of the

quality characteristic by separating the estimated mean

model and the standard deviation model from the

repeated measurement data. From the repeated mea-

surement data, the estimated mean model  by the

least squares method for the sample mean of the quality

characteristics. the estimated standard deviation model

 by the least squares method for the sample stan-

dard deviation of the quality characteristics. The param-

eter design is an experimental design and analysis

method to reduce the expected loss. To reduce the

expected loss in a product or process design, the quality

mean should be brought close to the target while reduc-

ing quality variation. First, we determine an average

model that measures the average of products and a stan-

dard deviation model that measures product variability.

Next, we find an optimal process that minimizes vari-

ance  while keeping the mean  within the

range possible.

Copeland and Nelson[7] proposed the optimization

formula for the nominal-is-best case as follows.

such that  

Here Rx is the region of interest of the control factors.

In case of the larger-is-better as follows. Here σT is a

constant.

such that  

On the other hand, in case of the smaller-is-better as

follows.

such that 

Copeland and Nelson[7] proposed an optimization for-

mula for the larger-is-better case and the smaller-is-bet-

ter case, while limiting the standard deviation model

and maximizing or minimizing the mean model. The

optimization formula for the nominal-is-best case is to

minimize the standard deviation model while limiting

the mean model. The method proposed by them has a

problem that the restriction conditions vary depending

on the quality characteristics. This procedural problem

is a wrong idea in that it is priority to reduce quality

variation rather than quality mean in parameter design.

Maintaining consistency of constraints in using optimi-

zation formulas is helpful in determining the optimal

solution of the control factors. This is helpful when ana-

lyzing data because it can be applied consistently to all

quality characteristics. They do not describe at all how

to set the specificity constant σT or σT as the upper limit

of the standard deviation model as a constraint in the

case of the larger-is-better and the smaller-is-better case.

We propose a new formula to overcome the problems

of the optimization formula proposed by Copeland and

Nelson[7] as follows. All quality characteristics of the

world have some specific target value. Therefore, we

want to set the target values for the three quality char-

acteristics in the mean model as follows.

(1) the nominal-is-best : Tμ = Specific constant

(2) the larger-is-better : Tμ = (1)

(3) the smaller-is-better : Tμ = 

From the above, all the quality characteristics can be

regarded as the nominal-is-best. in that they have a cer-

tain target value Tμ in the region of interest of the con-

trol factors. Therefore, the method of finding the

optimal process by data analysis can be equally applied
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to all the quality characteristics as the nominal-is-best.

In addition, since the target value for all quality char-

acteristics in the standard deviation model is smaller-is-

better as follows.

all the quality characteristics :

(2)

In parameter design, it is first of all to reduce quality

variation rather than quality mean. Therefore, we pro-

pose the following optimization formula for all quality

characteristics.

such that (3)

Here, the allowable range Δ is an arbitrary constant.

The method of determining x is to use the confidence

interval or various methods, but the basic idea is to

place the quality fluctuation within the range of the tar-

get as much as possible. Therefore, looking at the

behavior of the control factors in various ranges, It will

be a way to save them. Furthermore, since the mean and

standard deviation models are fitted by regression anal-

ysis, the estimated average model of quality character-

istics and the allowable range of target values should be

considered in finding the optimal process.

3. Numerical Example

In this chapter, we introduce the optimization proce-

dure using the newly proposed optimization formula

and optimization method in the parameter design. 

Box and Draper[8] conducted an experiment on the

printing process. Table 1 shows that the factorial exper-

iment was repeated three times at different locations.

This can be seen as a product array data from repeated

measurements with three levels of noise factor, z1, z2

and z3.

The mean model estimated by the least squares

method for the sample mean (y) of the quality charac-

teristics from the experimental data on the printing pro-

cess is as follows.

 = 327.6 + 117.0x1+ 109.4x2 + 131.5x3+ 32.0x1
2

− 22.4x2
2

− 29.1x3
2 + 66.0x1x2 + 75.5x1x3 + 43.6x2x3 (4)

The estimated standard deviation model for the sam-

ple standard deviation (v) of the quality characteristics

is as follows.

= 34.9 + 11.5x1 + 15.3x2 + 29.2x3 + 2x1
2

− 1.3x2
2+ 16.8x3

2 + 7.7x1x2 + 5.1x1x3 +14.1x2x3 (5)

On the other hand, the interest region of the three

control factors is −1 ≤ x1, x2, x3 ≤ 1.

We use a grid search method with a lattice spacing

of 0.01 within the interest range of the three control fac-

tors to find the optimal point of the control factor from

the two fitted models. In this case, 2013 grid points are

generated and optimized only at the generated grid

points. 

Table 2 shows the optimum point of the control factor

Tσ

min
x R
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min
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Table 1. Printing process data

x1 x2 x3 y1 y2 y3 v
2

1 -1 -1 -1  34 10 28 24.0 12.49

2 0 -1 -1 115 116 130 120.3 8.39

3 1 -1 -1 192 186 263 213.7 42.80

4 -1 0 -1 82 88 88 86.0 3.46

5 0 0 -1 44 178 188 136.7 80.41

6 1 0 -1 322 350 350 340.7 16.17

7 -1 1 -1 141 110 86 112.3 25.57

8 0 1 -1 259 251 259 256.3 4.62

9 1 1 -1 290 280 245 271.7 23.63

10 -1 -1 0 81 81 81 81.0 0.00

11 0 -1 0 90 122 93 101.7 17.67

12 1 -1 0 319 376 376 357.0 32.91

13 -1 0 0 180 180 154 171.3 15.01

14 0 0 0 372 372 372 372.0 0.00

15 1 0 0 541 568 396 501.7 92.50

16 -1 1 0 288 192 312 264.0 63.50

17 0 1 0 432 336 513 427.0 88.61

18 1 1 0 713 725 754 730.7 21.08

19 -1 -1 1 364 99 199 220.7 133.80

20 0 -1 1 232 221 266 239.7 23.46

21 1 -1 1 408 415 443 422.0 18.52

22 -1 0 1 182 233 182 199.0 29.45

23 0 0 1 507 515 434 485.3 44.64

24 1 0 1 846 535 640 673.7 158.20

25 -1 1 1 236 126 168 176.7 55.51

26 0 1 1 660 440 403 501.0 138.90

27 1 1 1 878 991 1161 1010.0 142.50

y
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minimizing | − 500| in the constraint condition

| − 12.50| ≤ Δ when the target value Tμ for the qual-

ity mean is 500 and the target value Tσ for the quality

variation is 12.50. In the optimization results, the opti-

mum point of the control factor is x1= −1.00, x2= 0.52

and x3= −0.43 when the allowable range Δ is 1.00, and

then = 219.91 and = 13.50. In addition, no

matter how large the allowable range Δ increases from

54.93, it can be seen that x1 is 0.20, x2 is 0.89, and x3

is 0.32. 

Table 3 shows the optimum point of the control factor

minimizing | − 851.01| in the constraint | −

12.50| ≤ Δ, with the maximum value of  being

Tμ = 851.01 for the case of the larger-is-better. As the

allowable range Δ increases in the optimization result,

x1, x2 and x3 tend to gradually increase at -1.00, 0.53 and

-0.4, respectively.

Table 4 shows the optimum value of the control fac-

tor minimizing | − 74.11| in the constraint condi-

tion | − 12.50| ≤ Δ, with the minimum value of

 being the target value of Tμ = 74.11 for the case

of the smaller-is-better. Table 4 shows the optimum

value of the control factor minimizing | − 74.11| in

the constraint condition | − 12.50| ≤ Δ, with the

minimum value of  being the target value of

Tμ = 74.11 for the case of the smaller-is-better. Even if

the optimization result tolerance range Δ increases from

0.01 to 2.65, x1, x2 and x3 do not change at -1.00, 1.00

and -1.00. In addition, it can be seen that no matter how

large the allowable range Δ increases from 7.62, x1

becomes 0.38, x2 becomes -1.00 and x3 becomes -1.00.

Therefore, it is possible to find a certain trend by

observing the optimal solution of the control factors by

optimizing the newly proposed optimization formula in

various permissible ranges Δ through the grid search

method. In addition, better parameter design can be

achieved by identifying and analyzing the causes of

such trends.
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σ̂ x( )

μ̂ x( )

Table 2. Optimization of the nominal-is-best

Δ x1 x2 x3

1.00 219.91 13.50 -1.00 0.52 -0.43

3.00 229.52 15.50 -0.87 0.62 -0.42

5.00 239.97 17.49 -0.72 0.77 -0.44

10.00 268.04 22.50 -0.49 0.91 -0.42

15.00 297.86 27.50 -0.26 0.97 -0.42

20.00 328.75 32.48 -0.10 1.00 -0.38

30.00 393.24 42.50 0.23 0.95 -0.31

40.00 460.38 52.49 0.53 0.99 -0.27

50.00 ~ 54.92 500.01 59.46 0.59 0.66 0.02

54.93 ~ ∞ 500.00 67.43 0.20 0.89 0.32

Table 3. Optimization of the larger-is-better

Δ x1 x2 x3

1.00 219.90 13.50 -1.00 0.53 -0.43

2.50 239.03 15.00 -0.89 0.64 -0.43

5.00 239.97 17.50 -0.72 0.77 -0.44 

10.00 268.04 22.50 -0.49 0.91 -0.42

20.00 328.75 32.48 -0.10 0.94 -0.38

30.00 393.24 42.50 0.23 0.96 -0.31

40.00 460.38 52.49 0.53 1.00 -0.27

60.00 599.16 72.48 1.00 0.96 -0.10

100.00 778.60 112.35 1.00 0.99 0.49

124.99 ~ ∞ 851.01 137.50 1.00 1.00 1.00

μ̂ σ̂

μ̂ σ̂
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4. Conclusions

This paper proposes a new optimization method for

parameter design and finds a way to apply it.. SN,

which is a performance measure of the nominal-is-best

used in data analysis in Taguchi parameter design, has

been pointed out by many scholars. Therefore, in this

paper, we propose an optimization formula for param-

eter design using the model which is separated from the

mean model and the standard deviation (or variance)

model from the experimental data. Accordingly, we can

apply the primary goal of the Taguchi methodology

which is to obtain a target condition on the mean while

achieving the variance, or to minimize the variance

while constraining the mean. In addition, the proposed

optimization method finds the optimum solution of the

control factors through the grid search method. The grid

search method can be easily used by anyone because it

is easy to program according to the user’s purpose.
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