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ACCURATE SOLUTION FOR SLIDING BURGER FLUID

FLOW
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Abstract. This article addresses the influence of partial slip condition in

the hydromagnetic flow of Burgers fluid in a rotating frame of reference.The

flows are induced by oscillation of a boundary. Two problems for oscilla-
tory flows are considered. Exact solutions to the resulting boundary value

problems are constructed. Analysis has been carried out in the presence

of magnetic field. Physical interpretation is made through the plots for
various embedded parameters.
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1. Introduction

Over the past few decades, the rotating flows of electrically conducting fluids
have received a lot of interest due to its applications in cosmical fluid dynamics,
in gaseous and nuclear reactors, in meteorology and in geophysical fluid dynam-
ics. The Coriolis force is found very significant in comparison to the inertial and
viscous forces. Greenspan and Howard [1] presented the classical work related
to the flows in a rotating system. Afterwards many studies have been given
for analysis of rotating flows involving viscous fluids (see [2-5] and several refs.
therein). Recent researchers also focused their attention on the investigation
of rotating flows with non-Newtonian fluids (see [6-9]). In continuation, Hayat
[10] analyzed the hydromagnetic flows of Burgers’ fluid in a rotating frame. In
view of this fact the aim of the current attempt is to securnitized the slip ef-
fects on the rotating flows of a Burgers’ fluid (a subclass of rate type fluids).
An incompressible, homogeneous and electrically conducting fluid occupied the
porous half space. Two problems are studied here for the exact solutions. The
first problem deals with the rotating flow by general periodic oscillations of a
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plate. Second problem corresponds to the flow analysis by elliptic harmonic
oscillations. The graph for solutions are made and analyzed.

2. Problem development

We consider an incompressible Burgers’ fluid in a half space z > 0. The fluid
is bounded by a rigid plate. The whole system comprising plate and fluid are in

a rotating frame of reference through uniform angular velocity. Ω̃ = Ω̃k̂ (where

k̂ denotes unit vector parallel to z-axis). A magnetic field (with strength B0)
acts in the z− direction. The influence of MHD is taken into the account. The
flow under consideration satisfies the following expressions [10]
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Here p̂ is the modified pressure given by p̂ = p̂ − 1
2ρ Ω2(x2 + y2) and ∂p

∂z = 0.
From Eqs (1) and (2) we have
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Letting
F = u+ iv (9)

and using Eqs. (5) and (7),we can combine Eqs. (8) and (9) as follows:
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= µ∂
3F
∂z3 + µλ3

∂4F
∂z3∂t . (10)

In the forthcoming analysis we are interested to develope closed form solutions
for two types of plate oscillations.

3. First problem

In this problem the flow is induced because of general periodic oscillation of
a plate. Moreover, the plate exhibits the slip effect. The boundary conditions
thus are:

u(0, t)− γ

µ
Sxz = ∪0f(t), v(0, t)− γ

µ
Syz = 0, (11)

u, v −→ 0 as z −→∞, (12)

where γ is the slip parameter and f(t) is the general periodic function with non-
zero frequency n = (2π)/T0 (where T0 is the time period). The function f(t)
has a Fourier series in the form
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where {ak} denotes Fourier series coefficients of f(t) and ∪0 is the constant
velocity. Through Eqs (5), (7), (9), (11), and (12) we can write,(
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Note that Eq. (21) provides the solution of the problem for general periodic os-
cillation of a plate. Flow fields in special case can be written through the appro-
priate Fourier coefficients (ak) which give rise to different plate oscillations. For
example, the flow fields Fj (j = 1− 5) due to five oscillations exp(iω0t), cosω0t,
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4. Second Problem

The flow in this subsection is due to elliptic harmonic oscillation of a plate
with partial slip. The resulting boundary condition thus is representating in the
form (
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We write the solution of the form
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Eqs. (35) and (36) as

u =

[
C1Re

−Ψ1α1{a1 cos (Ψ1β1 − nt) + a2 sin (Ψ1β1 − nt)}
+C2Re

−Ψ2α2{b1 cos (Ψ2β2 + nt) + b2 sin (Ψ2β2 + nt)}

]
, (35)



434 Muhammad Zubair and Tasawar Hayat
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The expressions of velocity components in the resonant case (n = 2Ω) are

u =

[
C1Re

−Ψ1α1{a1 cos (Ψ1β1 − nt) + a2 sin (Ψ1β1 − nt)}
+C2Re

−Ψ0α0{b1 cos (Ψ0β0 + nt) + b2 sin (Ψ0β0 + nt)}

]
, (39)

v =

[
C1Ie

−Ψ1α1{a2 cos (Ψ1β1 − nt)− a1 sin (Ψ1β1 − nt)}
+C2Ie

−Ψ0α0{b2 cos (Ψ0β0 + nt)− b1 sin (Ψ0β0 + nt)}

]
, (40)

where

C1R =

(
1 − n2λ2

)2
+ (nλ1)

2 + γ
[
α1

(
1 − n2λ2

)
+ nλ1β1 + nλ3

(
β1

(
1 − n2λ2

)
− α1nλ1

)]
[
1 − n2λ2 + γ (α1 − nλ3β1)

]2 + [nλ1 + γ (α1nλ3 + β1)]
2

,

C1I =
γ
[(

1− n2λ2

)
(α1nλ3 − β1) + nλ1 (α1 − β1nλ3)

]
[1− n2λ2 + γ (α1 − nλ3β1)]

2
+ [nλ1 + γ (α1nλ3 + β1)]

2 ,

C2R =

(
1 − n2λ2

)2
+ (nλ1)

2 + γ
[(

1 − n2λ2

)
(α0 − β0nλ3) + nλ1

(
β0 − α0n

2λ3

)]
[
1 − n2λ2 + γ (α0 − nλ3β0)

]2 + [nλ1 − γ (β0 − α0nλ3)]
2

,

C2I =
γ
[(

1− n2λ2

)
(α0nλ3 − β0)− nλ1 (α0 − β0nλ3)

]
[1− n2λ2 + γ (α0 − nλ3β0)]

2
+ [nλ1 − γ (β0 − α0nλ3)]

2 ,

and

α0 =
1√
2

[
S0 +

√
S2

0 + 1

]1/2

, β0 =
1√
2

[
−S0 +

√
S2

0 + 1

]1/2

,

Ψ0 =

(
nM2

[
nλ3

(
1− n2λ2

)
− nλ1)

]
(1 + n2λ2

3)

)1/2

z,

S0 =

(
1− n2λ2

)
+ λ1λ3n

2

nλ3 (1− n2λ2)− nλ1)
,

5. Graphical results and discussion

Here we are interseted to explain the influences of Hartmann number M ,
rotation Ω and slip γ parameters on both real and imagniary parts of the velocity
profiles. Figs. 1 (a) and 3 (b) have been plotted. In order to get such purpose
specially, Figs. 1 (a) and 1 (b) shows the effect of Hartmann number M on u and
v. It is observed that the u and v components of velocity decreases by increasing
the Hartmann parameter M . as excepted the magnetic force provides resistence
to the flow that is why velocity profile decreases.



436 Muhammad Zubair and Tasawar Hayat

Figure 1. The variation of M on u for general periodic oscilla-
tions when ω0 = 0.2, γ = 0.5, t = 1,Ω = 0.1, λ1 = 2, λ2 = 1 and
λ3 = 1.

Figs. 2 (a) and 2 (b) has been sketched for the variation of rotation parameter
for general periodic oscillations. Here we found that the u component of the
velocity decreases near the plate when there is an increase in rotation parameter
Ω. However v component of velocity increases with the increase in rotation Ω .

Figure 2. The variation of Ω on u for general periodic oscil-
lations when ω0 = 0.2, γ = 0.5, t = 1,M = 0.1, λ1 = 2, λ2 = 1
and λ3 = 1.

The variation of slip γ on u and v is depicted in the Figs. 3 (a) and 3 (b).
These Figs. represent that u and associated boundary layer thickness decrease
when γ increases. However v increases near the wall and decreases away from
the wall.
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Figure 3. The variation of γ on u for general periodic oscilla-
tions when ω0 = 0.2, γ = 0.5, t = 1,Ω = 0.1, λ1 = 2, λ2 = 1 and
λ3 = 1.

The effects of Hartmann number M , rotation Ω and slip γ on the velocity
components u and v in case of elliptic harmonic oscillations are plotted in the
Figs. 4 (a)− 12 (b). In these Figs. the flow has been discussed for non-resonant
(n 6= 2Ω) and resonant (n = 2Ω) cases. For non-resonant case we have the
situations for n < 2Ω and n > 2Ω. Figs. 4 (a)− 6 (b) corresponds to the flow for
n < 2Ω . It is noticed from Fig. 4 u and v decreases near the plate while these
increase away from the plate.

Figure 4. The variation of M on u for general periodic oscil-
lations when ω0 = 0.2, γ = 0.5, t = 1,Ω = 0.7, λ1 = 2, λ2 = 1,
λ3 = 1. and n < 2Ω.

When magnetic parameter increases Fig. 5 elucidates the effect of rotation Ω
on u and v Both velocity components u and v and associated layer thickness are
decreasing function of Ω. Fig. 6 characterizes the variation of slip parameter γ
on the flow field.
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Figure 5. The variation of Ω on u for general periodic oscil-
lations when ω0 = 0.2, γ = 0.5, t = 1,M = 0.5, λ1 = 2, λ2 = 1,
λ3 = 1. and n < 2Ω.

Figure 6. The variation of γ on u for general periodic oscilla-
tions when ω0 = 0.2,Ω = 0.5, t = 1,M = 0.5, λ1 = 2, λ2 = 1,
λ3 = 1. and n < 2Ω.

Here u decreases and v increases near the plate and reverse behavior is ob-
served away from the wall when γ increases. Fig. 7 (a)−9 (b) are sketched to see
the influence of Hartmann number M , rotation parameter Ω and slip parameter
γ on u and v when n > 2Ω. Fig. 7 is plotted to see the influence of Hartmann
number M on velocity profiles. It is observed that u and v components decrease
near the wall while far away from the plate reverse behavior is noted within the
increase of Hartmann number M . Fig. 8 is drawn to see the effect of rotation
parameter on both u and v components of the velocity. Obviously the rotation
Ω increases u component of velocity far away while v component decreases near
the plate and it increases near the plate. Effects of slip parameter γ on velocity
profile u and v are seen in Fig. 9.



Accurate Solution for Sliding Burger Fluid Flow 439

Figure 7. The variation of M on u for general periodic oscil-
lations when ω0 = 0.1, γ = 0.7, t = 1,Ω = 0.5, λ1 = 2, λ2 = 1,
λ3 = 1. and n > 2Ω.

Figure 8. The variation of Ω on u for general periodic oscil-
lations when ω0 = 0.1, γ = 0.7, t = 1,M = 0.5, λ1 = 2, λ2 = 1,
λ3 = 1. and n > 2Ω.

Figure 9. The variation of γ on u for general periodic oscil-
lations when ω0 = 0.1, γ = 0.7, t = 1,Ω = 0.5, λ1 = 2, λ2 = 1,
λ3 = 1. and n > 2Ω.

It is noted that the reverse behavior of γ is observed on both u and v com-
ponents of velocity profiles. Fig. 10 (a) − 12 (b) are sketched for velocities in
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resonant case (n = 2Ω). From Fig. 10 it is noticed that u and v show reverse
behaviour with an increase in Hartmann number M . However via Ω, u and v
both decreases near the boundary (see Fig. 11). For an increase in γ there is
decrease in u and an increase in v. (see Fig. 12 (a) and 12 (b)).

Figure 10. The variation of M on u for general periodic oscil-
lations when ω0 = 0.2, γ = 0.7, t = 1,Ω = 0.3, λ1 = 2, λ2 = 1,
λ3 = 1. and n = 2Ω.

Figure 11. The variation of Ω on u for general periodic oscil-
lations when ω0 = 0.2, γ = 0.7, t = 1,M = 0.3, λ1 = 2, λ2 = 1,
λ3 = 1. and n = 2Ω.
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Figure 12. The variation of γ on u for general periodic oscil-
lations when ω0 = 0.2,M = 0.5, t = 1,Ω = 0.3, λ1 = 2, λ2 = 1,
λ3 = 1. and n = 2Ω.

6. Conclusion

The exact solutions for rotating flows of an Burgers’ fluid are constructed
in the presence of slip condition. From the performed analysis, the following
observations have been noted.

(1) It is noted that consideration of angular velocity generates oscillatory
character in the flow.

(2) The layer thickness is decreasing function of applied magnetic field.
(3) Variation of slip parameter on the x− component of velocity show de-

creasing behavior in general periodic oscillation case.
(4) Meaningful solutions exist in both resonant and non-resonant cases when

fluid is magnetohydrodynamic.
(5) The results corresponding to no-slip condition are recovered when γ = 0.
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